- Linear regression is a way to identify a relationship between two or more variables and use these relationships to predict values of one variable for given value(s) of other variable(s).
- Linear regression assume the relationship between variables can be modelled through linear equation or an equation of line

- Last slide showed the linear regression model with one independent and one dependent variable.
- In Real world a data point has various important attributes and they need to be catered to while developing a regression model. (Many independent variables and one dependent variable)

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 \dots \dots w_n x_n$$

Regression – Problem Formulation

Let you have given with a data:

Age in Years (X)	Blood Pressure (Y)
56	147
49	145
72	160
38	115
63	130
47	128

Linear Regression

For given example the Linear Regression is modeled as:

```
BloodPressure(y) = w_0 + w_1AgeinYear(X)
```

OR

 $y = w_0 + w_1 X$ – Equation of line

with w_0 is intercept on Y_axis and w_1 is slope of line

Blood Pressure - Dependent Variable

Age in Year

- Independent Variable

Linear Regression- Best Fit Line

Regression uses line to show the trend of distribution.

- There can be many lines that try to fit the data points in scatter diagram
- The aim is to find Best fit Line

What is Best Fit Line

✤ Best fit line tries to explain the variance in given data. (minimize the total residual/error)

What is Best Fit Line

Best fit line tries to explain the variance in given data. (minimize the total residual/error)

