
Minimum Description Length PrincipleOccam's razor: prefer the shortest hypothesisMDL: prefer the hypothesis h that minimizeshMDL = argminh2H LC1(h) + LC2(Djh)where LC(x) is the description length of x underencoding CExample: H = decision trees, D = training datalabels� LC1(h) is # bits to describe tree h� LC2(Djh) is # bits to describe D given h{ Note LC2(Djh) = 0 if examples classi�edperfectly by h. Need only describe exceptions� Hence hMDL trades o� tree size for trainingerrors140 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Minimum Description Length PrinciplehMAP = argmaxh2H P (Djh)P (h)= argmaxh2H log2 P (Djh) + log2P (h)= argminh2H � log2P (Djh) � log2P (h) (1)Interesting fact from information theory:The optimal (shortest expected codinglength) code for an event with probability p is� log2 p bits.So interpret (1):� � log2 P (h) is length of h under optimal code� � log2 P (Djh) is length of D given h underoptimal code! prefer the hypothesis that minimizeslength(h) + length(misclassifications)
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Gibbs Classi�erBayes optimal classi�er provides best result, butcan be expensive if many hypotheses.Gibbs algorithm:1. Choose one hypothesis at random, according toP (hjD)2. Use this to classify new instanceSurprising fact: Assume target concepts are drawnat random from H according to priors on H. Then:E[errorGibbs] � 2E[errorBayesOptimal]Suppose correct, uniform prior distribution over H,then� Pick any hypothesis from VS, with uniformprobability� Its expected error no worse than twice Bayesoptimal144 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Bayesian Belief NetworksInteresting because:� Naive Bayes assumption of conditionalindependence too restrictive� But it's intractable without some suchassumptions...� Bayesian Belief networks describe conditionalindependence among subsets of variables! allows combining prior knowledge about(in)dependencies among variables with observedtraining data(also called Bayes Nets)
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Conditional IndependenceDe�nition: X is conditionally independent ofY given Z if the probability distributiongoverning X is independent of the value of Ygiven the value of Z; that is, if(8xi; yj; zk) P (X = xijY = yj; Z = zk) = P (X = xijZ = zk)more compactly, we writeP (XjY; Z) = P (XjZ)Example: Thunder is conditionally independent ofRain, given LightningP (ThunderjRain; Lightning) = P (ThunderjLightning)Naive Bayes uses cond. indep. to justifyP (X; Y jZ) = P (XjY; Z)P (Y jZ)= P (XjZ)P (Y jZ)159 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Bayesian Belief Network
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Network represents a set of conditionalindependence assertions:� Each node is asserted to be conditionallyindependent of its nondescendants, given itsimmediate predecessors.� Directed acyclic graph
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Bayesian Belief Network
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Represents joint probability distribution over allvariables� e.g., P (Storm;BusTourGroup; : : : ; ForestF ire)� in general,P (y1; : : : ; yn) = nYi=1P (yijParents(Yi))where Parents(Yi) denotes immediatepredecessors of Yi in graph� so, joint distribution is fully de�ned by graph,plus the P (yijParents(Yi))161 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Inference in Bayesian NetworksHow can one infer the (probabilities of) values ofone or more network variables, given observedvalues of others?� Bayes net contains all information needed forthis inference� If only one variable with unknown value, easy toinfer it� In general case, problem is NP hardIn practice, can succeed in many cases� Exact inference methods work well for somenetwork structures�Monte Carlo methods \simulate" the networkrandomly to calculate approximate solutions
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Learning of Bayesian NetworksSeveral variants of this learning task� Network structure might be known or unknown� Training examples might provide values of allnetwork variables, or just someIf structure known and observe all variables� Then it's easy as training a Naive Bayes classi�er
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Learning Bayes NetsSuppose structure known, variables partiallyobservablee.g., observe ForestFire, Storm, BusTourGroup,Thunder, but not Lightning, Camp�re...� Similar to training neural network with hiddenunits� In fact, can learn network conditionalprobability tables using gradient ascent!� Converge to network h that (locally) maximizesP (Djh)
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Gradient Ascent for Bayes NetsLet wijk denote one entry in the conditionalprobability table for variable Yi in the networkwijk = P (Yi = yijjParents(Yi) = the list uik of values)e.g., if Yi = Campfire, then uik might behStorm = T;BusTourGroup = F iPerform gradient ascent by repeatedly1. update all wijk using training data Dwijk  wijk + � Xd2D Ph(yij; uikjd)wijk2. then, renormalize the wijk to assure� Pj wijk = 1� 0 � wijk � 1
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More on Learning Bayes NetsEM algorithm can also be used. Repeatedly:1. Calculate probabilities of unobserved variables,assuming h2. Calculate new wijk to maximize E[lnP (Djh)]where D now includes both observed and(calculated probabilities of) unobserved variablesWhen structure unknown...� Algorithms use greedy search to add/substractedges and nodes� Active research topic
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Summary: Bayesian Belief Networks
� Combine prior knowledge with observed data� Impact of prior knowledge (when correct!) is tolower the sample complexity� Active research area{ Extend from boolean to real-valued variables{ Parameterized distributions instead of tables{ Extend to �rst-order instead of propositionalsystems{More e�ective inference methods{ ...
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Expectation Maximization (EM)When to use:� Data is only partially observable� Unsupervised clustering (target valueunobservable)� Supervised learning (some instance attributesunobservable)Some uses:� Train Bayesian Belief Networks� Unsupervised clustering (AUTOCLASS)� Learning Hidden Markov Models
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Generating Data from Mixture of kGaussians
p(

x)

xEach instance x generated by1. Choosing one of the k Gaussians with uniformprobability2. Generating an instance at random according tothat Gaussian
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EM for Estimating k MeansGiven:� Instances from X generated by mixture of kGaussian distributions� Unknown means h�1; : : : ; �ki of the k Gaussians� Don't know which instance xi was generated bywhich GaussianDetermine:�Maximum likelihood estimates of h�1; : : : ; �kiThink of full description of each instance asyi = hxi; zi1; zi2i, where� zij is 1 if xi generated by jth Gaussian� xi observable� zij unobservable170 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



EM for Estimating k MeansEM Algorithm: Pick random initial h = h�1; �2i,then iterateE step: Calculate the expected value E[zij] of eachhidden variable zij, assuming the currenthypothesis h = h�1; �2i holds.E[zij] = p(x = xij� = �j)P2n=1 p(x = xij� = �n)= e� 12�2 (xi��j)2P2n=1 e� 12�2 (xi��n)2M step: Calculate a new maximum likelihood hypothesish0 = h�01; �02i, assuming the value taken on byeach hidden variable zij is its expected valueE[zij] calculated above. Replace h = h�1; �2i byh0 = h�01; �02i. �j  Pmi=1E[zij] xiPmi=1E[zij]171 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



EM AlgorithmConverges to local maximum likelihood hand provides estimates of hidden variables zijIn fact, local maximum in E[lnP (Y jh)]� Y is complete (observable plus unobservablevariables) data� Expected value is taken over possible values ofunobserved variables in Y
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General EM ProblemGiven:� Observed data X = fx1; : : : ; xmg� Unobserved data Z = fz1; : : : ; zmg� Parameterized probability distribution P (Y jh),where{ Y = fy1; : : : ; ymg is the full data yi = xi [ zi{ h are the parametersDetermine:� h that (locally) maximizes E[lnP (Y jh)]Many uses:� Train Bayesian belief networks� Unsupervised clustering (e.g., k means)� Hidden Markov Models173 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



General EM MethodDe�ne likelihood function Q(h0jh) which calculatesY = X [ Z using observed X and currentparameters h to estimate ZQ(h0jh) E[lnP (Y jh0)jh;X]EM Algorithm:Estimation (E) step: Calculate Q(h0jh) using thecurrent hypothesis h and the observed data X toestimate the probability distribution over Y .Q(h0jh) E[lnP (Y jh0)jh;X]Maximization (M) step: Replace hypothesis h bythe hypothesis h0 that maximizes this Qfunction. h argmaxh0 Q(h0jh)
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