Minimum Description Length Principle

Occam’s razor: prefer the shortest hypothesis

MDL: prefer the hypothesis A that minimizes
hMDL = arhgrgin Lcl<h> + LCQ<D|h>
c

where L¢(x) is the description length of x under
encoding C

Example: H = decision trees, D = training data
labels

o Lc,(h) is # bits to describe tree h
o Lc,(Dlh) is # bits to describe D given h

— Note L¢,(D]h) = 0 if examples classified
perfectly by h. Need only describe exceptions

e Hence hjy/pr trades off tree size for training
errors
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Minimum Description Length Principle

harap = argr}fleaé}[cP(DM)P(h)
= argmax log, P(D|h) + log, P(h)
= argmin —log, P(D|h) —log, P(h) (1)
Interesting fact from information theory:

The optimal (shortest expected coding
length) code for an event with probability p is
— log, p bits.

So interpret (1):
e —log, P(h) is length of h under optimal code

e —log, P(D|h) is length of D given h under
optimal code

— prefer the hypothesis that minimizes

length(h) + length(misclassi fications)
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Gibbs Classifier

Bayes optimal classifier provides best result, but
can be expensive if many hypotheses.
Gibbs algorithm:

1. Choose one hypothesis at random, according to
P(h|D)

2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn
at random from H according to priors on H. Then:

E[@TTOTGZ'()()S] S 2E[€TTOTBayesOptimal]

Suppose correct, uniform prior distribution over H,
then

e Pick any hypothesis from VS, with uniform
probability

e Its expected error no worse than twice Bayes
optimal
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Bayesian Belief Networks

Interesting because:

e Naive Bayes assumption of conditional
independence too restrictive

e But it’s intractable without some such
assumptions...

e Bayesian Belief networks describe conditional
independence among subsets of variables

— allows combining prior knowledge about
(in)dependencies among variables with observed
training data

(also called Bayes Nets)
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Conditional Independence

Definition: X is conditionally independent of
Y given Z if the probability distribution
governing X is independent of the value of Y
given the value of Z; that is, if

Vi, yj,21) P(X =2|Y =y, Z = z1) = P(X = x| Z = %
more compactly, we write

P(X|Y,Z) = P(X|Z)

Example: Thunder is conditionally independent of
Rain, given Lightning

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
Naive Bayes uses cond. indep. to justify

P(X,Y|Z) = P(X|Y,Z)P(Y|Z2)
= P(X|Z)P(Y|Z)
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Bayesian Belief Network

C
-C

SB S-B -S,B -S,-B
04 01 08 0.2
06 09 02 0.8

Network represents a set of conditional
independence assertions:

e Each node is asserted to be conditionally
independent of its nondescendants, given its

immediate predecessors.

e Directed acyclic graph
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Bayesian Belief Network

SB S-B -S,B -S,-B
C 04 01 08 0.2
-C 06 09 02 0.8

Represents joint probability distribution over all
variables

e c.g., P(Storm, BusTourGroup, ..., ForestFire)
e in general,
Plyi, ..., yn) = z‘ﬁ[1 P(y;|Parents(Y;))
where Parents(Y;) denotes immediate
predecessors of Y; in graph

e S0, joint distribution is fully defined by graph,
plus the P(y;|Parents(Y;))
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Inference in Bayesian Networks

How can one infer the (probabilities of) values of
one or more network variables, given observed
values of others?

e Bayes net contains all information needed for
this inference

e If only one variable with unknown value, easy to
infer it

e In general case, problem is NP hard

In practice, can succeed in many cases

e Exact inference methods work well for some
network structures

e Monte Carlo methods “simulate” the network
randomly to calculate approximate solutions
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Learning of Bayesian Networks

Several variants of this learning task

e Network structure might be known or unknown

e Training examples might provide values of all
network variables, or just some

If structure known and observe all variables

e Then it’s easy as training a Naive Bayes classifier
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Learning Bayes Nets

Suppose structure known, variables partially
observable

e.g., observe ForestFire, Storm, BusTourGroup,
Thunder, but not Lightning, Campfire...

e Similar to training neural network with hidden
units

e In fact, can learn network conditional
probability tables using gradient ascent!

e Converge to network h that (locally) maximizes
P(D|h)
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Gradient Ascent for Bayes Nets

Let w; ;. denote one entry in the conditional
probability table for variable Y; in the network

w;ir = P(Y; = yij|Parents(Y;) = the list w;;. of values)

e.g., it Y; = Campfire, then u,;; might be
(Storm =T, BusTourGroup = F)

Perform gradient ascent by repeatedly

1. update all w;;; using training data D

P ijy W d
Wik $— Wik + UdZD h<yl‘; +d)
c iik

2. then, renormalize the w;;;, to assure
® 2, Wijk = 1
o0 < wir <1
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More on Learning Bayes Nets

EM algorithm can also be used. Repeatedly:

1. Calculate probabilities of unobserved variables,
assuming h

2. Calculate new w;j; to maximize E[ln P(D|h)]
where D now includes both observed and
(calculated probabilities of ) unobserved variables

When structure unknown...

e Algorithms use greedy search to add/substract
edges and nodes

e Active research topic
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Summary: Bayesian Belief Networks

e Combine prior knowledge with observed data

e Impact of prior knowledge (when correct!) is to
lower the sample complexity

e Active research area

— Extend from boolean to real-valued variables
— Parameterized distributions instead of tables

— Extend to first-order instead of propositional
systems

— More effective inference methods
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Expectation Maximization (EM)

When to use:
e Data is only partially observable

e Unsupervised clustering (target value
unobservable)

e Supervised learning (some instance attributes
unobservable)

Some uses:
e Train Bayesian Beliet Networks
e Unsupervised clustering (AUTOCLASS)
e Learning Hidden Markov Models
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Generating Data from Mixture of %
Gaussians

p(x)

X

Each instance x generated by

1. Choosing one of the k Gaussians with uniform
probability

2. Generating an instance at random according to
that Gaussian
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EM for Estimating ¢ Means

Given:

e Instances from X generated by mixture of k
Gaussian distributions

e Unknown means {(u1, ..., u;) of the k Gaussians

e Don’t know which instance x; was generated by
which Gaussian

Determine:

e Maximum likelihood estimates of (1, ..., 1)

Think of full description of each instance as
Yi = <517i, Zil, Z@'2>, where

e 2;; is 1 if x; generated by jth Gaussian
e 1, observable

e 2;; unobservable
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EM for Estimating ¢ Means

EM Algorithm: Pick random initial h = (g1, o),
then iterate

E step: Calculate the expected value E|z;;] of each
hidden variable z;;, assuming the current

hypothesis h = (u, pu2) holds.
p(z = zi|lp = p;)
Sh1 P(r = @il p = fin)
e—ﬁ(xi—uj)z
B ne1 e 37

Elzj] =

(xi—ﬂn)Q

M step: Calculate a new maximum likelihood hypothesis
h' = (u, py), assuming the value taken on by
each hidden variable z;; is its expected value
E|z;j] calculated above. Replace h = (u1, pu2) by
h'' = (1)

oity Blzi] @i

oLy Blzij]

fj
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EM Algorithm

Converges to local maximum likelihood h
and provides estimates of hidden variables z;;

In fact, local maximum in E{ln P(Y |h)]

e Y is complete (observable plus unobservable
variables) data

e Expected value is taken over possible values of
unobserved variables in Y

172 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



General EM Problem

Given:
e Observed data X = {x1,..., 2}
e Unobserved data Z = {z1,...,2,}

e Parameterized probability distribution P(Y'|h),
where

—Y ={y1,...,yn} is the full data y;, = z; U z;

— h are the parameters

Determine:

e i that (locally) maximizes E|ln P(Y|h)]

Many uses:
e Train Bayesian belief networks

e Unsupervised clustering (e.g., kK means)

e Hidden Markov Models
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General EM Method

Define likelihood function Q(h'|h) which calculates
Y = X U Z using observed X and current
parameters h to estimate Z

Q(h'|h) + Elln P(Y|h')|h, X]

EM Algorithm:

FEstimation (E) step: Calculate Q(h'|h) using the
current hypothesis A and the observed data X to
estimate the probability distribution over Y.

Q(h'|h) «+ E[ln P(Y|h")|h, X]

Maximization (M) step: Replace hypothesis h by
the hypothesis A’ that maximizes this )
function.

h < argmax Q(h'|h)
h/
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