G. Narayanamma Institute of Technology & Science

(Autonomous)

(for Women)

Shaikpet, Hyderabad- 500 104

II-B.Tech I-Semester Regular Examinations, Dec-2019.

DIGITAL SYSTEM DESIGN

(Common to ECE & ETE)

Max. Marks: 70

Note:

- 1. Question paper comprises of Part A and Part B.
- 2. Part A is compulsory which carries 10 marks. Answer all questions in Part A.
- **3. Part B** (for 60 marks) consists of **five questions** with <u>"either" "or"</u> pattern. Each question carries 12 marks and may have a,b,c as sub questions. The student has to answer any one full question.

PART-A

(Answer 05 questions. Each question carries 2 marks)

		[5x2=10]	
Q.No	Question	Marks	Bloom's Level
Q.1	a) Why is a hexadecimal system called an alpha numeric number system?	[2]	L1
	b) Why commercial ECL families are not as popular as CMOS and TTL?	[2]	L2
	c) What are the advantages of tabulation method over K-map?	[2]	L1
	d) Explain Clock Skew and define Level triggering, Edge triggering modes of operation.	[2]	L1
	e) Differentiate between Mealy and Moore machines.	[2]	L1

END OF PART A

PART-B

(Answer 05 full questions. Each question carries 12 marks)

Q.No	Question	Marks	Bloom's Level
Q.2(a)	Represent and draw the following Boolean functions using minimum number of	[07]	L3
	basic gates.		
	1) $(AB + AB^{2}) (AB^{2})^{-1}$ 1) $[(ABD(C + D + E)) + (A + DBC)^{2}] (ABC + (CAD)^{2})^{-1}$		
(b)	Convert the following numbers	[05]	12
(0)	i) (1EA D) to have 9	[05]	LZ
	1) $(1FA.B)_{16}$ to base 8		
	ii) $(549.7)_{10}$ to binary.		
	iii) $(111001101.110010)_2$ to octal.		
	OR		
Q.3(a)	Define the following types of codes and give an example for it	[07]	L1
	i) Weighted code ii) Non-weighted code iii) Self complementing code		
	iv) Cyclic code		
<i>(b)</i>	Perform the following addition using excess-3 code i) $(386)_{10}+(756)_{10}$	[05]	L3
	ii) $(1010)_{10} + (444)_{10}$.		

Time: 03 Hours

GNITS-R- 18 –113AT

Q.4(a)	Explain about CMOS/ECL interfacing	[06]	L2
(b)	Design a 2-input NAND logic gate using TTL and explain its operation.	[06]	L1
	OR		
<i>Q.5(a)</i>	Design a transistor circuit for 2 input ECL NOR gate and explain circuit with the help of logic diagrams and function table.	[06]	L1
(b)	Design a 2-input XOR and XNOR logic gates using CMOS logic	[06]	L3
Q.6(a)	Simplify the given Boolean function $F(w, x, y, z) = \Sigma(2, 3, 12, 13, 14, 15)$ using i) Sum of Products and ii) Product of Sums K-Map representation and implement using only NAND Gates.	[08]	L2
(b)	What is the difference between canonical form and standard form? Which form is preferable while implementing a Boolean function with gates?	[04]	L1
Q.7(a)	OR Given $F(A,B,C,D) = \Sigma(1, 4, 6, 7, 8, 9, 10, 11, 15)$. Simplify using Quin-McClusky method and determine the prime implicants, essential prime implicants and the minimized Boolean expression.	[08]	L2
(b)	Compare PROM, PLA and PAL.	[04]	L1
Q.8(a)	Explain the conversion procedure from one flip flop to another flip flop with the help of JK to D conversion.	[07]	L2
(b)	What is race around condition how can it be eliminated?	[05]	L1
	OR		
0.9(a)	Design a divide by 16 synchronous down counter.	[07]	L2
(b)	What is the propagation delay in asynchronous counters? Explain how it effects maximum clock frequency?	[05]	L4
0.10(a)	Draw the ASM chart for the following state diagram	[07]	L3
	EF = 00 $EF = 01$ $O10$ $EF = 01$ IDD		
(b)	Explain the capabilities and limitations of fine state machines.	[05]	L1
	OR		
Q.11	Design a binary multiplier and its control logic by drawing ASM chart and realize the same using gates and D Flip-Flops.	[12]	L2

END OF PART B END OF THE QUESTION PAPER