G. Narayanamma Institute of Technology \& Science

(Autonomous)
(for Women)

Shaikpet, Hyderabad- 500104

II-B.Tech I-Semester Regular Examinations, Dec-2019.
 DIGITAL SYSTEM DESIGN
 (Common to ECE \& ETE)

Max. Marks: 70

Note:

1. Question paper comprises of Part A and Part B.
2. Part A is compulsory which carries 10 marks. Answer all questions in Part A.
3. Part B (for 60 marks) consists of five questions with "either" "or" pattern. Each question carries 12 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions. The student has to answer any one full question.

PART-A

(Answer 05 questions. Each question carries 2 marks)
[$5 \times 2=10]$

Q.No	Question	Marks	Bloom's Level
Q.1	a) Why is a hexadecimal system called an alpha numeric number system?	$[2]$	L1
	b) Why commercial ECL families are not as popular as CMOS and TTL?	$[2]$	$\mathbf{L 2}$
	c) What are the advantages of tabulation method over K-map?	$[2]$	L1
	d) Explain Clock Skew and define Level triggering, Edge triggering modes of operation.	$[2]$	L1
	e) Differentiate between Mealy and Moore machines.	$[2]$	L1

END OF PART A

PART-B
(Answer 05 full questions. Each question carries 12 marks)

Q.No	Question	Marks	Bloom's Level
Q.2(a)	Represent and draw the following Boolean functions using minimum number of basic gates. i) $\left(\mathrm{AB}+\mathrm{AB}{ }^{\prime}\right)(\mathrm{AB})^{\prime}$ ii) $\left[(\mathrm{ABD}(\mathrm{C}+\mathrm{D}+\mathrm{E}))+(\mathrm{A}+\mathrm{DBC})^{\prime}\right]\left(\mathrm{ABC}+(\mathrm{CAD})^{\prime}\right)$	[07]	L3
(b)	Convert the following numbers i) $(1 \text { FA.B })_{16}$ to base 8 ii) $(549.7)_{10}$ to binary iii) $(111001101.110010)_{2}$ to octal.	[05]	L2
	OR		
Q.3(a)	Define the following types of codes and give an example for it i) Weighted code ii) Non-weighted code iii) Self complementing code iv) Cyclic code	[07]	L1
(b)	Perform the following addition using excess-3 code i) $(386)_{10}+(756)_{10}$ ii) $(1010)_{10}+(444)_{10}$.	[05]	L3

Q.4(a)	Explain about CMOS/ECL interfacing	[06]	L2
(b)	Design a 2-input NAND logic gate using TTL and explain its operation.	[06]	L1
	OR		
Q.5(a)	Design a transistor circuit for 2 input ECL NOR gate and explain circuit with the help of logic diagrams and function table.	[06]	L1
(b)	Design a 2-input XOR and XNOR logic gates using CMOS logic	[06]	L3
Q.6(a)	Simplify the given Boolean function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(2,3,12,13,14,15)$ using i) Sum of Products and ii) Product of Sums K-Map representation and implement using only NAND Gates.	[08]	L2
(b)	What is the difference between canonical form and standard form? Which form is preferable while implementing a Boolean function with gates?	[04]	L1
	OR		
Q.7(a)	Given $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,4,6,7,8,9,10,11,15)$. Simplify using QuinMcClusky method and determine the prime implicants, essential prime implicants and the minimized Boolean expression.	[08]	L2
(b)	Compare PROM, PLA and PAL.	[04]	L1
Q.8(a)	Explain the conversion procedure from one flip flop to another flip flop with the help of JK to D conversion.	[07]	L2
(b)	What is race around condition how can it be eliminated?	[05]	L1
	OR		
Q.9(a)	Design a divide by 16 synchronous down counter.	[07]	L2
(b)	What is the propagation delay in asynchronous counters? Explain how it effects maximum clock frequency?	[05]	L4
Q.10(a)	Draw the ASM chart for the following state diagram	[07]	L3
(b)	Explain the capabilities and limitations of fine state machines.	[05]	L1
	OR		
Q. 11	Design a binary multiplier and its control logic by drawing ASM chart and realize the same using gates and D Flip-Flops.	[12]	L2

