G. Narayanamma Institute of Technology \& Science

(Autonomous) (for Women)
Shaikpet, Hyderabad- 500104

II-B.Tech I-Semester Regular/Supplementary Examinations, Feb/Mar-2023.
 DIGITAL SYSTEM DESIGN

(Common to ECE \& ETE)
Max. Marks: 70
Time: $\mathbf{0 3}$ Hours
Note:

1. Question paper comprises of Part A and Part B.
2. Part A is compulsory which carries 10 marks. Answer all questions in Part A.
3. Part B (for 60 marks) consists of five questions with "either" "or" pattern. Each question carries 12 marks and may have a,b,c as sub questions. The student has to answer any one full question.

PART-A
(Answer 05 questions. Each question carries 2 marks)

Q.No	Question	Marks	CO	Bloom's Level
Q. 1	a) Perform the following using 2's compliment method i) $14.6_{(10)}+228.134_{(10)}$ ii) $112.65_{(10)}-347.31_{(10)}$	[02]	CO	[L2]
	b) List the advantages of CMOS logic family	[02]	CO	[L1]
	c) Draw the circuit which generate even parity for 3-bit input.	[02]	CO	[L1]
	d) What is race around condition? When and why does it occur?	[02]	CO	[L1]
	e) Draw the general structure of Meely and Moore machines.	[02]	CO	[L1]

END OF PART-A
PART-B
(Answer 05 full questions. Each question carries 12 marks)

Q.No	Question	Marks	CO	Bloom's Level
Q.2(a)	Realize the given function i) using only NOR gates ii) Using Fundamental gates. $\mathrm{F}=\left(\mathrm{x}^{\prime}+\mathrm{y}^{\prime}+\mathrm{z}\right) \cdot\left(\mathrm{x}^{\prime}+\mathrm{y}+\mathrm{z}\right) \cdot\left(\mathrm{x}+\mathrm{y}^{\prime}+\mathrm{z}^{\prime}\right) \cdot\left(\mathrm{x}+\mathrm{y}^{\prime}+\mathrm{z}\right)$	[08]	CO	[L2]
(b)	Simplify the expression $f=w^{\prime} x\left(z^{\prime}+y^{\prime} z\right)+x\left(w+w^{\prime} y z\right)$ using Boolean algebra postulates to one literal and draw the truth table.	[04]	CO	[L3]
	OR			
Q.3(a)	Find the complement of the function and express them in Canonical POS and SOP form $\mathrm{F}=\mathrm{AB}+\mathrm{A}(\mathrm{B}+\mathrm{C})+\mathrm{B}^{\prime}(\mathrm{B}+\mathrm{D})$	[08]	CO	[L2]
(b)	State and prove Consensus theorem. Simplify the following function using consensus theorem w'y' $+w y z+x y ' z+w x ' y$.	[04]	CO	[L3]
Q.4(a)	Explain about sinking and sourcing currents in TTL family.	[04]	CO	[L1]

GNITS-R-18-113AT

(b)	Draw and Explain the operation of 2 input AND gate using CMOS logic.	[08]	CO	[L2]
	OR			
Q.5(a)	With neat diagram explain the operation of 2 input NOR gate using TTL logic.	[06]	CO	[L2]
(b)	Explain how to interface CMOS/TTL logic families.	[06]	CO	[L2]
Q.6(a)	Construct the 16×1 Mux using 8×1 Mux.	[04]	CO	[L3]
(b)	Design a combinational circuit which takes 3 bit binary input and gives its output as square of its input.	[08]	CO	[L3]
	OR			
Q.7(a)	Construct a combinational logic circuit which converts a decimal number into an equivalent Excess-3 number.	[08]	CO	[L3]
(b)	Implement Full adder using PLA and PAL.	[04]	CO	[L2]
Q.8(a)	Construct synchronous BCD Counter and explain its operation.	[08]	CO	[L3]
(b)	Compare BCD counter and Decade counter.	[04]	CO	[L2]
	OR			
Q.9(a)	Design a synchronous counter with T flip-flop that goes through the sequence $0,1,3,7,6,4,0,1 \ldots$.	[08]	CO	[L3]
(b)	Draw the circuit of Universal shift register.	[04]	CO	[L1]
Q.10(a)	Develop the state diagram of serial binary adder and explain the methodology	[08]	CO	[L6]
(b)	Analyze and explain the steps involved in the synthesis of synchronous sequential circuit.	[04]	CO	[L1]
	OR			
Q.11(a)	Develop an ASM chart to implement the function of a Dice game Controller.	[08]	CO	[L6]
(b)	Define setup time and hold time. Explain their importance in the design of sequential circuits	[04]	CO	[L2]

