G. Narayanamma Institute of Technology & Science

(Autonomous)

(for Women)

Shaikpet, Hyderabad- 500 104

II-B.Tech I-Semester Regular/Supplementary Examinations, Feb/Mar-2023.

DIGITAL SYSTEM DESIGN (Common to ECE & ETE)

Max. Marks: 70

Time: 03 Hours

Note:

- 1. Question paper comprises of Part A and Part B.
- 2. Part A is compulsory which carries 10 marks. Answer all questions in Part A.
- **3. Part B** (for 60 marks) consists of **five questions** with <u>"either" "or"</u> pattern. Each question carries 12 marks and may have a,b,c as sub questions. The student has to answer any one full question.

PART-A

(Answer 05 questions. Each question carries 2 marks)

Q.No	Question	Marks	CO	Bloom's Level
Q.1	a) Perform the following using 2's compliment method i) $14.68_{(10)} + 228.134_{(10)}$ ii) $112.65_{(10)} - 347.31_{(10)}$	[02]	CO	[L2]
	b) List the advantages of CMOS logic family	[02]	CO	[L1]
	c) Draw the circuit which generate even parity for 3-bit input.	[02]	CO	[L1]
	d) What is race around condition? When and why does it occur?	[02]	СО	[L1]
	e) Draw the general structure of Meely and Moore machines.	[02]	CO	[L1]

END OF PART-A

PART-B

(Answer 05 full questions. Each question carries 12 marks)

Q.No	Question	Marks	СО	Bloom's
				Level
Q.2(a)	Realize the given function	[08]	CO	[L2]
	i) using only NOR gates ii) Using Fundamental gates.			
	F = (x' + y' + z).(x' + y + z).(x + y' + z').(x + y' + z)			
(b)	Simplify the expression $f = w'x(z'+y'z) + x(w+w'yz)$ using Boolean	[04]	СО	[L3]
	algebra postulates to one literal and draw the truth table.			
	OR			
Q.3(a)	Find the complement of the function and express them in Canonical POS	[08]	CO	[L2]
	and SOP form $F = AB + A(B+C) + B'(B+D)$			
(b)	State and prove Consensus theorem. Simplify the following function	[04]	CO	[L3]
	using consensus theorem $w'y' + wyz + xy'z + wx'y$.			
Q.4(a)	Explain about sinking and sourcing currents in TTL family.	[04]	CO	[L1]

GNITS-R- 18 – 113AT

<i>(b)</i>	Draw and Explain the operation of 2 input AND gate using CMOS logic.	[08]	СО	[L2]
	OR			
Q.5(a)	With neat diagram explain the operation of 2 input NOR gate using TTL logic.	[06]	СО	[L2]
(b)	Explain how to interface CMOS/TTL logic families.	[06]	СО	[L2]
Q.6(a)	Construct the 16 x 1 Mux using 8 x 1 Mux.	[04]	СО	[L3]
<i>(b)</i>	Design a combinational circuit which takes 3 bit binary input and gives its output as square of its input.	[08]	СО	[L3]
	OR			
Q.7(a)	Construct a combinational logic circuit which converts a decimal number into an equivalent Excess-3 number.	[08]	СО	[L3]
<i>(b)</i>	Implement Full adder using PLA and PAL.	[04]	СО	[L2]
Q.8(a)	Construct synchronous BCD Counter and explain its operation.	[08]	СО	[L3]
(b)	Compare BCD counter and Decade counter.	[04]	СО	[L2]
	OR			
Q.9(a)	Design a synchronous counter with T flip-flop that goes through the sequence 0,1,3,7,6,4,0,1	[08]	СО	[L3]
(b)	Draw the circuit of Universal shift register.	[04]	СО	[L1]
Q.10(a)	Develop the state diagram of serial binary adder and explain the methodology	[08]	СО	[L6]
<i>(b)</i>	Analyze and explain the steps involved in the synthesis of synchronous sequential circuit.	[04]	СО	[L1]
	OR			
Q.11(a)	Develop an ASM chart to implement the function of a Dice game Controller.	[08]	СО	[L6]
(b)	Define setup time and hold time. Explain their importance in the design of sequential circuits	[04]	СО	[L2]

END OF PART B END OF THE QUESTION PAPER