Uncertainty

e Mostintelligent systems have some degree of uncertainty associated with
them.

e Uncertainty may occur in KBS because of the problems with the data.
— Data might be missing or unavailable.

— Data might be present but unreliable or ambiguous due to
measurement errors, multiple conflicting measurements etc.

— The representation of the data may be imprecise or inconsistent.
— Data may just be expert's best guess.

— Data may be based on defaults and the defaults may have
exceptions.

— Given numerous sources of errors, the most KBS requires the
incorporation of some form of uncertainty management.

— For any form of uncertainty scheme, we must be concerned with
three issues.

— How to represent uncertain data?

— How to combine two or more pieces of uncertain data?

— How to draw inference using uncertain data?

— Probability is the oldest theory with strong mathematical basis.

— Other methods for handling uncertainty are Bayesian belief
network, Certainty factor theory etc.



Probability Theory
e Probability is a way of turning opinion or expectation into numbers.
e [t lies between 0 to 1 that reflects the likelihood of an event.

e The chance that a particular event will occur = the number of ways the
event can occur divided by the total number of all possible events.

Example: The probability of throwing two successive heads with a fair coin is
0.25

— Total of four possible outcomes are :
HH, HT, TH & TT
— Since there is only one way of getting HH,
probability = %4 = 0.25
Event: Every non-empty subset A (of sample space S) is called an event.
— null set ® is an impossible event.
— Sis a sure event
e P(A) is notation for the probability of an event A.
e P(@®)=0andP(S)=1

e The probabilities of all events S = {A1, A2, ..., An} must sum up to
certainty i.e. P(A1) + ... + P(An) = 1

e Since the events are the set, it is clear that all set operations can be
performed on the events.

e If A and B are events, then
— AN B;Au Band A' are also events.
— A-Bis an event "A but not B
— Events A and B are mutually exclusive, if A N B=®
Axioms of Probability

e Let S be a sample space, A and B are events.




- P(A)>0

- P(S)=1

- P(A’)=1-P(A)

- P(AuUB)=P(A) +P(B)-PANB)

— If events A and B are mutually exclusive, then
P(A U B) =P(A) + P(B),

e In general, for mutually exclusive events Al,...,An in S
P(A1 U A2 U... U An ) = P(A1) + P(A2) + ..+ P(An)
Joint Probability

e Joint Probability of the occurrence of two independent events is written
as P (A and B) and is defined by

P(A and B) = P(A n B) = P(A) * P(B)
Example: We toss two fair coins separately.
Let P(A) = 0.5, Probability of getting Head of first coin
P(B) = 0.5, Probability of getting Head of second coin
e Probability (Joint probability) of getting Heads on both the coins is
= P(A and B)
=P(A) *P(B) =0.5X0.5 = 0.25

e The probability of getting Heads on one or on both of the coins i.e. the
union of the probabilities P(A) and P(B) is expressed as

P(A or B) = P(A U B) = P(A) + P(B) - P(A) * P(B)
= 0.5 X 0.5 - 0.25

= 0.75



Conditional Probability

e Itrelates the probability of one event to the occurrence of another i.e.
probability of the occurrence of an event H given that an event E is
known to have occurred.

e Probability of an event H (Hypothesis), given the occurrence of an event E
(evidence) is denoted by P(H | E) and is defined as follows:

Number of events favorable to H
which are also favorable to E

P(H | E) =

No. of events favorable to E

P(H and E)

P(E)

e What is the probability of a person to be male if person chosen at
random is 80 years old?

e The following probabilities are given
— Any person chosen at random being male is about 0.50

— probability of a given person be 80 years old chosen at random is
equal to 0.005

— probability that a given person chosen at random is both male and
80 years old may be =0.002

e The probability that an 80 years old person chosen at random is male is
calculated as follows:

P(X is male | Age of X is 80)
= [P(X is male and the age of X is 80)] / [P(Age of X is 80)]

= 0.002 / 0.005 =04




Conditional Probability with Multiple Evidences

e Ifthere are n evidences and one hypothesis, then conditional probability
is defined as follows:

P(Hand E1 ... and En)

P(H | E1 and ... and En) =
P(E1 and ... and En)
Bayes’ Theorem

e Bayestheorem provides a mathematical model for this type of reasoning
where prior beliefs are combined with evidence to get estimates of
uncertainty.

e This approach relies on the concept that one should incorporate the prior
probability of an event into the interpretation of a situation.

e [t relates the conditional probabilities of events.

e [tallows us to express the probability P(H | E) in terms of the
probabilities of P(E | H), P(H) and P(E).

P(E|H) * P(H)

P(H|E) =
P(E)
Proof of Bayes’ Theorem
e Bayes’ theorem is derived from conditional probability.

Proof: Using conditional probability

P(H|E) = P(H and E) / P(E)
= P(H|E) * P(E) = P(H and E) (1)
Also P(E|H) = P(E and H) / P(H)

N P(E|H) * P(H) = P(E and H) (2)




From Eqgs (1) and (2), we get
P(H|E) * P(E) = P(E|H) * P(H)
Hence, we obtain

P(E|H) * P(H)

P(H|E) = N
P(E

Extension of Bayes’ Theorem
e (Consider one hypothesis H and two evidences E1 and E2.

e The probability of H if both E1 and E2 are true is calculated by using the
following formula:

P(E1| H) * P(E2| H) * P(H)

P(H|E1 and E2) =
P(E1 and E2)
e Consider one hypothesis H and Multiple evidences E1,....,, En.

e The probability of H if E1,..., En are true is calculated by using the
following formula:

P(E1| H) * ... * P(En | H) * P(H)

P(H|E1 and ... and En) =
P(E1 and ... and En)

e Find whether Bob has a cold (hypotheses) given that he sneezes (the
evidence) i.e., calculate P(H | E).

e Suppose that we know / given the following.
P(H) = P (Bob has a cold) = 0.2
P(E | H)= P(Bob was observed sneezing

| Bob has a cold) = 0.75




P(E | ~H)= P(Bob was observed sneezing
| Bob does not have a cold) = 0.2

Now

P(H | E) P(Bob has a cold | Bob was observed sneezing)

[ P(E | H) * P(H) ] / P(E)
e We can compute P(E) as follows:

P(E) P(E and H) + P( E and ~H)

P(E | H) * P(H) + P(E | ~H) * P(~H)

(0.75)(0.2) + (0.2) (0.8) = 0.31
— HenceP(H|E) = [(0.75* 0.2)] /0.31=0.48387

— We can conclude that “Bob’s probability of having a cold given that
he sneezes” is about 0.5

e Further it can also determine what is his probability of having a cold if
he was not sneezing?

PH|~E) = [P(~E | H) *P(H)] / P(~E)
= [(1-0.75) *0.2] / (1 - 0.31)

= 0.05 / 0.69 = 0.072

— Hence “Bob’s probability of having a cold if he was not sneezing” is
0.072

Advantages and Disadvantages of Bayesian Approach
Advantages:

e They have sound theoretical foundation in probability theory and thus
are currently the most mature of all certainty reasoning methods.

e Also they have well-defined semantics for decision making.
Disadvantages:

e They require a significant amount of probability data to construct a KB.




— For example, a diagnostic system having 50 detectable conclusions
(R) and 300 relevant and observable characteristics (S) requires a
minimum of 15,050 (R*S + R) probability values assuming that all
of the conclusions are mutually exclusive.

e [f conditional probabilities are based on

— statistical data, the sample sizes must be sufficient so that the
probabilities obtained are accurate.

— human experts, then question of values being consistent &
comprehensive arise.

e The reduction of the associations between the hypothesis and evidence to
numbers also eliminates the knowledge embedded within.

— The ability to explain its reasoning and to browse through the
hierarchy of evidences to hypothesis to a user are lost and

Probabilities in Facts and Rules of Production System
e Some Expert Systems use Bayesian theory to derive further concepts.
— We know that KB = facts + Rules

e We normally assume that the facts are always completely true but facts
might also be probably true.

e Probability can be put as the last argument of a predicate representing
fact.

Example:

e a fact "battery in a randomly picked car is 4% of the time dead" in Prolog
is expressed as

battery_dead (0.04).

— This fact indicates that ‘battery is dead’ is sure with probability
0.04.

Probability in Rules

e If then rule in rule-based Systems can incorporate probability as follows:

— if X is true then Y can be concluded with probability P




Examples:

e Consider the following probable rules and their corresponding Prolog
representation.

"if 30% of the time when car does not start, it is true that the
battery is dead "

battery_dead (0.3) :- ignition_not_start(1.0).

Here 30% is rule probability. If right hand side of the rule is certain,
then we can even write above rule as:

battery_dead(0.3) :- ignition_not_start.

— "the battery is dead with same probability that the voltmeter is
outside the normal range"

battery_dead(P) :-voltmeter_measurment_abnormal(P).
Cumulative Probabilities

e Combining probabilities from the facts and successful rules to get a
cumulative probability of the battery being dead is an important issue.

— We should gather all relevant rules and facts about the battery is
dead.

e The probability of a rule to succeed depends on probabilities of sub goals
on the right side of a rule.

— The cumulative probability of conclusion can be calculated by
using and-combination.

e In this case, probabilities of sub goals in the right side of rule are
multiplied, assuming all the events are independent of each other using
the formula

Prob(A and B and C and .....) = Prob(A) * Prob(B) * Prob(C) *...
e The rules with same conclusion can be uncertain for different reasons.

e If there are more than one rules with the same predicate name having
different probabilities, then in cumulative likelihood of the above
predicate can be computed by using or-combination.




e To get overall probability of predicate, the following formula is used to get
'or' probability if events are mutually independent.

Prob(A or Bor Cor ...)
=1-[(1- Prob(A)) (1 - Prob(B)) (1 - Prob(()).....]
Examples
1. "half of the time when a computer does not work, then the battery is dead"
battery_dead(P):-computer_dead(P1), P is P1*0.5.
— Here 0.5 is a rule probability.

2. "95% of the time when a computer has electricalproblem and battery is old,
then the battery is dead"

battery_dead(P) :- electrical_prob(P1),
battery_old(P2), P is P1 * P2 * 0.95.

— Here 0.95 is a rule probability.

e The rule probability can be thought of hidden and is combined along
with associated probabilities in the rule.

Bayesian Belief Network

e Joint probability distribution of two variables A and B are given in the
following Table

Joint Probabilities A A’
B 0.20 0.12
B’ 0.65 0.03

e Joint probability distribution for n variables require 2" entries with all
possible combinations.

e The time and storage requirements for such computations become
impractical as n grows.

e Inferring with such large numbers of probabilities does not seem to
model human process of reasoning.

e Human tends to single out few propositions which are known to be
causally linked when reasoning with uncertain beliefs.




e This leads to the concept of forming belief network called a Bayesian
belief network.

e I[tis a probabilistic graphical model that encodes probabilistic
relationships among set of variables with their probabilistic
dependencies.

e This belief network is an efficient structure for storing joint probability
distribution.

Definition of Bayesian Belief Network:

It is a acyclic (with no cycles) directed graph where the nodes of the graph
represent evidence or hypotheses and arc connecting two nodes represents
dependence between them.

e If there is an arc from node X to another node Y (i.e., X —>Y), then X is
called a parent of Y, and Y is a child of X.

e The set of parent nodes of a node Xiis represented by parent_nodes(Xi).
Joint Probability of n variables

e Joint probability for ‘n’ variables (dependent or independent) is computed
as follows.

e For the sake of simplicity we write P(X1, ... , Xu) instead of P(X1and ...
and Xn).

P(Xl, ,Xn)= P(Xn|X1,...,Xn_1)*P(X1, ,Xn.l)
Or
P(X1, .., X0) = P(Xa| X1, ooey Xna) * P(Xna | X1\ o.n ) Xnz) * ... * P(Xa| X1) * P(Xy)

Joint Probability of ‘n’ Variables using B-Network

e In Bayesian Network, the joint probability distribution can be written as
the product of the local distributions of each node and its parents such
as:

n
P(Xi, ..., Xn) = [T P(Xi|parent_nodes(Xi))
i=1

e This expression is reduction of joint probability formula of ‘n’ variables as
some of the terms corresponding to independent variables will not be
required.




e If node Xi has no parents, its probability distribution is said to be
unconditional and it is written as P(Xi) instead of P(Xi |
parent_nodes(Xi)).

e Nodes having parents are called conditional.

e If the value of a node is observed, then the node is said to be an evidence
node.

e Nodes with no children are termed as hypotheses node and nodes with
no parents are called independent nodes.

e The following graph is a Bayesian belief network.

e Here there are four nodes with {A, B} representing evidences and
{C, D} representing hypotheses.

e A and B are unconditional nodes and C and D are conditional
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Bayesian Belief Network

nodes.

To describe above Bayesian network, we should specify the following
probabilities.

P(A) = 0.3
P(B) = 0.6
P(C|A) = 0.4
P(CI-A) = 0.2
P(D|A, B) = 0.7
P(DIA, ~B) = 0.4
P(D-A,B) = 0.2
P(DI-A,~B) = 0.01

e They can also be expressed as conditional probability tables as follows:

Conditional Probability Tables
P(A) | P(B) A P(C) A B P(D)
0.3 0.6 T 0.4 T T 0.7
F 0.2 T F 0.4
F T 0.2
F F 0.01




Using Bayesian belief network on previous slide, only 8 probability values
in contrast to 16 values are required in general for 4 variables {A, B, C,
D} in joint distribution probability.

Joint probability using Bayesian Belief Network is computed as follows:

P(A, B, C, D) P(DIA, B) * P(CIA) * P(B) * P(A)

0.7*04*06*03 = 0.0504

Example of Simple B-Network:

Suppose that there are three events namely earthquake, burglary or
tornado which could cause ringing of alarm in a house.

This situation can be modeled with Bayesian network as follows.
All four variables have two possible values T (for true) and F (for false).

— Here the names of the variables have been abbreviated to 4 =
Alarm, E = Earthquake, and B = Burglary and T = Tornado.

Earthquake Burglary

Alarm ringing
Table contains the probability values representing complete Bayesian
belief network. Prior probability of ‘earthquake’ is 0.4 and if it is
earthquake then probability of ‘tornado’ is 0.8. and if not then the
probability of ‘earthquake’ is 0.5.

Conditional Probability Tables
P(E) P(B) E B Tor P(A)
0.4 0.7 T T T 1.0
T T F 0.9
E P(Tor) T F T 0.95
T 0.8 T F F 0.85
F 0.5 F T T 0.89
F T F 0.7
F F T 0.87
F F F 0.3




The joint probability is computed as follows:
P(E,B, T, A) = P(A| E, B, T) * P(T|E) * P(E) * P(B)
= 1.0 *0.8 * 0.4 * 0.7 = 0.214

Using this model one can answer questions using the conditional
probability formula as follows:

"What is the probability that it is earthquake, given the alarm is
ringing?" P(E|A)

"What is the probability of burglary, given the alarm is ringing?"
P(B|A)

— "What is the probability of ringing alarm if both earthquake and
burglary happens?" P(A|E, B)

Advantages of Bayesian Belief Network:

It can easily handle situations where some data entries are missing as
this model encodes dependencies among all variables.

It is intuitively easier for a human to understand direct dependencies
than complete joint distribution.

It can be used to learn causal relationships.

It is an ideal representation for combining prior knowledge (which often
comes in causal form) and data because the model has both causal and
probabilistic semantics.

Disadvantages of Bayesian Belief Network:

The probabilities are described as a single numeric point value. This can
be a distortion of the precision that is actually available for supporting
evidence.

There is no way to differentiate between ignorance and uncertainty.
These are distinct two different concepts and be treated as such.

The quality and extent of the prior beliefs used in Bayesian inference
processing are major shortcomings.



Reliability of Bayesian network depends on the reliability of prior
knowledge.

Selecting the proper distribution model to describe the data has a notable effect

on the quality of the resulting network. Therefore, selection of the statistical

distribution for modeling the data is very important.

Certainty Factor Theory

Certainty factor theory provides another way of measuring uncertainty by
describing a practical way of compromising on pure Bayesian system.

Certainty factor is based on a number of observations.

In traditional probability theory, the sum of confidence for a relationship
and against a relationship must add up to 1.

In practical situation, an expert might have some confidence about some
relationship being true and have no idea about the relationship being
untrue.

Confidence measures correspond to the informal evaluations that human
experts attach to their conclusions, such as 'it is probably or likely true’.

The certainty factor is based on 'confidence for' and 'confidence against'

The MB[H, E] is a measure of belief in the range [0, 1] in hypothesis H
given the evidence E.

e If evidence supports it fully then MB[H, E] = 1 and it is zero if the
evidence fails to support the hypothesis.

Similarly, MD[H, E] is a measure of disbelief in the range [0, 1] in
hypothesis H given the evidence E.

e [t measures the extent to which the evidence E supports the
negation of the hypothesis H.

It is to be noted that MD is not compliment of MB.

Measure of belief

The measure of belief calculates the relative decrement of disbeliefin a
given hypothesis H due to some evidence E.

It may be intuitively defined as follows:



(1- P(H)) - (1 - P(HIE))

(1-P(H))

P(H|E) — P(H)

(1-P(H)

In order to avoid getting a negative value of belief, we can modify the above
definition to obtain positive value of measure as follows:

1, ifP(H) =1
Max (P(H|E), P(H)) —P(H)

MBIH, E] = , otherwise
(1-P(H))

Measure of disbelief

e The measure of disbelief (MD) is similarly defined as the relative
decrement of belief in a given hypothesis H due to some evidence E. It
may be represented as follows:

e It may be intuitively defined as follows:

P(H) - P(H|E)
MDI[H, E] =
P(H)
Alternatively,
1, if P(H)=0
P(H) — Min{P(HI|E), P(H)}
MD[H, E] = , otherwise

P(H)

Certainty Factor
e C(Certainty factor is defined as difference of MB and MD.

e Positive certainty factor indicates evidence for the validity of the
hypothesis, where evidence implies anything that is used to determine

the truth of hypothesis.

— If CF =1, then the hypothesis is said to be true, while if CF
= -1, the hypothesis is considered to be false.




— DMoreover, if CF = 0, then there is no evidence regarding whether
the hypothesis is true or false.

CF[H, E] = MB[H, E] - MD[H, E], where, -1< CF[H, E] < 1.

e For computing CF in general, we need to determine the mechanism for
handling the following three cases:

— Certainty factor when there are two evidences supporting
hypothesis H. It is called incrementally acquired evidence.

— Certainty factor for combination of two hypotheses based on the
same evidence.

— Certainty factor for chained rule.
Two Evidences supporting hypothesis
e C(asel: Incrementally acquired evidence

e Compute CF(H, E1 and E2).

0, if MD[H,E1andE;] =1
MB[H, Exand E2] =
MB[H, E1] + MB[H, E2] * (1- MB[H, E1]), otherwise

Let us first compute MB(H, E1 and E2) and MD(H, E1 and E2)
e Similarly MD is defined

e Suppose we make an initial observation E1 that confirms our belief in H
with MB[H, E1) = 0.4 and MD(H, E1) = 0. Consider second observation
E2 that also confirms H with MB[H, E2) = 0.3. Then CF(H, E1) = 0.4

MB(H, E1 and E2) = MB(H, E1) + MB(H, E2) * (1 - MB(H, E1))
= 0.4 + 0.3 * (1-MB(H, E1))

0.4 +0.18 = 0.58

and
MD(H, E1 and E2) = 0.0

Therefore,




CF(H, E1 and E2) = 0.58

e Here we notice that slight confirmatory evidence can larger certainty
factor.

e For other two cases refer to textbook.

e (ase 2: There are two hypotheses H1 and H2 based on the same
evidence E. Find CF for conjunction and disjunction of hypotheses.

e (ase 3: In chained rule, the rules are chained together with the
result that the outcome of one rule is input of another rule. For
example, if the outcome of an experiment is treated as an evidence
for some hypothesis i.e., E1 > E2 > H

Dempster-Shafer Theory
e Itis a mathematical theory of evidence.

e It allows one to combine evidence from different sources and arrive at a
degree of belief.

e Belief function is basically a generalization of the Bayesian theory of
probability.

e Belief functions allow us to base degrees of belief or confidence for one
event on probabilities of related events, whereas Bayesian theory requires
probabilities for each event.

e These degrees of belief may or may not have the mathematical properties
of probabilities.

e The difference between them will depend on how closely the two events
are related.

e It also uses numbers in the range [0, 1] to indicate amount of belief in a
hypothesis for a given piece of evidence.

e Degree of belief in a statement depends upon the number of answers to
the related questions containing the statement and the probability of
each answer.




In this formalism, a degree of belief (also referred to as a mass) is
represented as a belief function rather than a Bayesian probability
distribution

Example
Mary and John are friends.

— Suppose Mary tells John that his car is stolen. Then John’s belief
on the truth of this statement will depend on the reliability of
Mary. But it does not mean that the statement is false if Mary is
not reliable.

— Assume that probability of John’s opinion about the reliability of
Mary is given as 0.85. Then the probability of Mary to be unreliable
for John is 0.15.

— So her statement justifies a 0.85 degree of belief that a John’s car
is stolen and John has no reason to believe that his car is not
stolen so it is zero degree of belief that John’s car is not stolen.

— This zero does not mean that John is sure that his car is not stolen
as in the case of probability, 0 would mean that John is sure that
his car is not stolen. The values 0.85 and the 0 together constitute
a belief function.

Dempster Theory Formalism

Let U be the universal set of all hypotheses, propositions, or statements
under consideration.

e The power set P(U), is the set of all possible subsets of U, including
the empty set represented by ¢.

e The theory of evidence assigns a belief mass to each subset of the
power set.

A function m: P(U) — [0,1] is called a basic belief assignment (BBA)
function. It satisfies the following axioms:

e m($p)=0;>m(A)=1, VA e P(U)

The value of m(A) is called mass assigned to A on the unit interval.



It makes no additional claims about any subsets of A, each of which has,
by definition, its own mass.

Dempster's Rule of Combination

The original combination rule, known as Dempster's rule of combination,
is a generalization of Bayes' rule.

Assume that m1 and m2 are two belief functions used for representing
multiple sources of evidences for two different hypotheses.

Let A, B < U, such that m1(A) # 0, and m2(B) # 0.

The Dempster's rule for combining two belief functions to generate an m3
function may be defined as:

m3(¢) = 0
Y anB=c (M1(A) * m2(B))
m3(C) =

1-3 anB= ¢ (ML(A) * m2(B))

This belief function gives new value when applied on the set C=A n B.
The combination of two belief functions is called the joint mass.
— Here m3 can also be written as (m1 o m2).

The expression [ 2 a~B=¢ (m1(A) * m2(B))] is called normalization
factor.

— Itis a measure of the amount of conflict between the two mass
sets.

The normalization factor has the effect of completely ignoring conflict and
attributing any mass associated with conflict to the null set.

Example : Diagnostic System

Suppose we have mutually exclusive hypotheses represented by a set U =
{flu, measles, cold, cough}.

The goal is to assign or attach some measure of belief to the elements of
U based on evidences.



— Itis not necessary that particular evidence is supporting some

individual element of U but rather it may support subset of U.

For example, an evidence of ‘fever’ might support {flu, measles}.

e So a belief function ‘m’ is defined for all subsets of U.

e The degree of belief to a set will keep on changing if we get more

evidences supporting it or not.

e Initially assume that we have no information about how to choose

hypothesis from the given set U.

e So assign m for U as 1.0 i.e,, m(U) = 1.0

— This means we are sure that answer is somewhere in the whole set

U.

e Suppose we acquire evidence (say fever) that supports the correct

diagnosis in the set {flu, measles} with its corresponding ‘m’ value as 0.8.

Then we get m({flu, measles}) = 0.8 and m(U) = 0.2

o Let us define two belief functions m1 and m2 based on evidence of fever
and on evidence of headache respectively as follows:

m1({flu, measles})

m1(U)
m2({flu, cold})

m2(U)

= 0.8

0.2

0.6

= 0.4

e We can compute their combination m3 using these values.

m1(U) = 0.2

Combination of m1 and m2 m2({flu, cold}) = 0.6 m2(U) = 0.4
m1({flu, measles})= 0.8 m3({flu}) = 0.48 m3({flu, measles}) = 0.32
m3({flu, cold}) = 0.12 m3(U) =0.08

e Now previous belief functions are modified to m3 with the following belief
values and are different from earlier beliefs.

m3({flu})

0.48




m3({flu, cold}) = 0.12
m3({flu, measles}) = 0.32
m3(U) = 0.08

e Further, if we have another evidence function m4 of sneezing with the
belief values as:

m4({cold, cough}) = 0.7

m4(U) = 0.3
e Then the combination of m3 and m4 gives another belief function as

follows:

Combination of m3 and m4 | m4({cold, cough}) = 0.7 m4(U) = 0.3
m3{filu}) = 0.48 m5(¢) = 0.336 | m5({flu}) = 0114
m3({flu, cold)) = 0.12 m5({cold}) = 0.084 | m5({flu, cold)) = 0.036
m3({flu, measles})= 0.32 m5(¢ ) = 0.224 | m5({flu, measles})= 0.096
m3(U) = 0.08 mb5({cold, cough}) = 0.056 | m5(U) = 0.024

e [f we get empty set (¢) by intersection operation, then we have to
redistribute any belief that is assigned to ¢ sets proportionately across
non empty sets using the value (1 -2 AN B= ¢ (m1(A)* m2(B))) in the
denominator of belief values for non empty sets.

e From the table we get multiple belief values for empty set (¢) and its total
belief value is 0.56.

e So according to formula, we have to scale down the remaining values of
non empty sets by dividing by a factor ( 1 - 0.56 =0.44).

m5 ({flu}) = (0.144/0.44 ) = 0.327
m5({cold}) = (0.084/0.44) = 0.191
m5({fly, cold})) =  (0.036/0.44) = 0.082
m5({flu, measles})= (0.096/0.44) =  0.218
m5({cold, cough}) = (0.056/0.44) =  0.127




m5(X) = (0.024/0.44) = 0.055

e While computing new belief we may get same subset generated from
different intersection process. The ‘m’ value for such set is computed by
summing all such values.

— given set to functions to suit the application.



