Logic Concepts

Objective

- Logic Concepts
- Equivalence Laws
- Propositional Logic
- Natural deduction method
- Axiomatic System
- Semantic Tableaux System
- Resolution Refutation Method

Propositional Logic Concepts

- Logic is a study of principles used to
 - distinguish correct from incorrect reasoning.
- Formally it deals with
 - the notion of truth in an abstract sense and is concerned with the principles of valid inferencing.
- A proposition in logic is a declarative statements which are either true or false (but not both) in a given context. For example,
 - "Jack is a male",
 - "Jack loves Mary" etc.

Cont..

- Given some propositions to be true in a given context,
 - logic helps in inferencing new proposition, which is also true in the same context.
- Suppose we are given a set of propositions such as
 - "It is hot today" and
 - "If it is hot it will rain", then
 - we can infer that
 - "It will rain today".

Well-formed formula

- Propositional Calculus (PC) is a language of propositions basically refers
 - to set of rules used to combine the propositions to form compound propositions using logical operators often called connectives such as Λ , V, \sim , \rightarrow , \leftrightarrow
- Well-formed formula is defined as:
 - An atom is a well-formed formula.
 - If α is a well-formed formula, then $\sim \alpha$ is a well-formed formula.
 - If α and β are well formed formulae, then $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$, $(\alpha \leftrightarrow \beta)$ are also well-formed formulae.
 - A propositional expression is a well-formed formula if and only if it can be obtained by using above conditions.

Truth Table

- Truth table gives us operational definitions of important logical operators.
 - By using truth table, the truth values of well-formed formulae are calculated.
- Truth table elaborates all possible truth values of a formula.
- The meanings of the logical operators are given by the following truth table.

Р	Q	~P	PΛQP	VQ P	Q	$P \leftrightarrow$	Q
T	Т	F	Т	Т	Т	T	
T	F	F	F	Т	F	F	
F	Т	Т	F	Т	Т	F	
F	F	Т	F	F	Т	Т	

Equivalence Laws

Commutation

1. $P \Lambda Q$

2. P V Q

 \cong

 \cong

 $Q \Lambda P$

QVP

Association

1. $P \Lambda (Q \Lambda R)$

2. P V (Q V R)

≅

 $(P \land Q) \land R$

(P V Q) V R

Double Negation

~ (~ P)

 \cong

P

Distributive Laws

1. $P \Lambda (Q V R)$

 \cong

2. PV(QΛR)

 \simeq

$(P \land Q) \lor (P \land R)$ $(P \lor Q) \land (P \lor R)$

De Morgan's Laws

1. $\sim (P \land Q)$

2. $\sim (P V Q)$

 \cong

= ~

Law of Excluded Middle

P V ~ P

 \cong

Law of Contradiction

 $P \wedge \sim P$

 \cong

F (false)

Propositional Logic - PL

- PL deals with
 - the validity, satisfiability and unsatisfiability of a formula
 - derivation of a new formula using equivalence laws.
- Each row of a truth table for a given formula is called its interpretation under which a formula can be true or false.
- A formula α is called **tautology** if and only
 - if α is true for all interpretations.
- A formula α is also called **valid** if and only if
 - it is a tautology.

Cont...

- Let α be a formula and if there exist at least one interpretation for which α is true,
 - then α is said to be **consistent** (satisfiable) i.e., if \exists a model for α , then α is said to be consistent .
- A formula α is said to be inconsistent (unsatisfiable), if and only if
 - α is always false under all interpretations.
- We can translate
 - simple declarative and
 - conditional (if .. then) natural language sentences into its corresponding propositional formulae.

Example

- Show that "It is humid today and if it is humid then it will rain so it will rain today" is a valid argument.
- Solution: Let us symbolize English sentences by propositional atoms as follows:

A : It is humid

B: It will rain

Formula corresponding to a text:

$$\alpha: ((A \rightarrow B) \land A) \rightarrow B$$

• Using truth table approach, one can see that α is true under all four interpretations and hence is valid argument.

Cont..

Truth Table for $((A \rightarrow B) \land A) \rightarrow B$						
A	В	$A \to B = X$	$X \wedge A = Y$	$Y \rightarrow B$		
T	T	T	T	T		
T	F	F	F	T		
F	T	T	F	T		
F	F	T	F	T		

Cont...

- Truth table method for problem solving is
 - simple and straightforward and
 - very good at presenting a survey of all the truth possibilities in a given situation.
- It is an easy method to evaluate
 - a consistency, inconsistency or validity of a formula, but the size of truth table grows exponentially.
 - Truth table method is good for small values of n.
- For example, if a formula contains n atoms, then the truth table will contain 2ⁿ entries.
 - A formula α : (P Λ Q Λ R) \rightarrow (Q V S) is **valid** can be proved using truth table.
 - A table of 16 rows is constructed and the truth values of $\boldsymbol{\alpha}$ are computed.
 - Since the truth value of α is true under all 16 interpretations, it is valid.

Cont..

- We notice that if P Λ Q Λ R is false, then α is true because of the definition of \rightarrow .
- Since P Λ Q Λ R is false for 14 entries out of 16, we are left only with two entries to be tested for which α is true.
 - So in order to prove the validity of a formula, all the entries in the truth table may not be relevant.
- Other methods which are concerned with proofs and deductions of logical formula are as follows:
 - Natural Deductive System
 - Axiomatic System
 - Semantic Tableaux Method
 - Resolution Refutation Method

Natural deduction method - ND

- ND is based on the set of few deductive inference rules.
- The name natural deductive system is given because it mimics the pattern of natural reasoning.
- It has about 10 deductive inference rules.

Conventions:

- E for Elimination.
- P, P_k , $(1 \le k \le n)$ are atoms.
- α_k , (1 \le k \le n) and β are formulae.

ND Rules

Rule 1: $I-\Lambda$ (Introducing Λ)

 $I-\Lambda$: If $P_1, P_2, ..., P_n$ then $P_1 \Lambda P_2 \Lambda ... \Lambda P_n$

Interpretation: If we have hypothesized or proved P_1, P_2, \dots and P_n , then their conjunction $P_1 \wedge P_2 \wedge \dots \wedge P_n$ is also proved or derived.

Rule 2: $E-\Lambda$ (Eliminating Λ)

E- Λ : If $P_1 \Lambda P_2 \Lambda ... \Lambda P_n$ then P_i ($1 \le i \le n$)

Interpretation: If we have proved $P_1 \Lambda P_2 \Lambda ... \Lambda P_n$, then any P_i is also proved or derived. This rule shows that Λ can be eliminated to yield one of its conjuncts.

Rule 3: I-V (Introducing V)

I-V: If P_i ($1 \le i \le n$) then $P_1 V P_2 V ... V P_n$

Interpretation: If any Pi $(1 \le i \le n)$ is proved, then $P_1V ...V P_n$ is also proved.

Rule 4: E-V (Eliminating V)

E-V: If $P_1 \vee ... \vee P_n$, $P_1 \rightarrow P$, ..., $P_n \rightarrow P$ then P

Interpretation: If $P_1 V \dots V P_n$, $P_1 \rightarrow P$, ..., and $P_n \rightarrow P$ are proved, then P is proved.

Rules - cont..

```
Rule 5: I- \rightarrow (Introducing \rightarrow)
     I- \rightarrow : If from \alpha_1, ..., \alpha_n infer \beta is proved then \alpha_1 \wedge ... \wedge \alpha_n \rightarrow \beta
    is proved
Interpretation: If given \alpha_1, \alpha_2, ... and \alpha_n to be proved and from these
    we deduce \beta then \alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n \rightarrow \beta is also proved.
Rule 6: E-\rightarrow (Eliminating \rightarrow) - Modus Ponen
E-\rightarrow: If P_1\rightarrow P, P_1 then P
Rule 7: I \rightarrow (Introducing \leftrightarrow)
I \rightarrow : If P_1 \rightarrow P_2, P_2 \rightarrow P_1 then P_1 \leftrightarrow P_2
Rule 8: E \rightarrow (Elimination \leftrightarrow)
    E-\leftrightarrow: If P_1 \leftrightarrow P_2 then P_1 \rightarrow P_2, P_2 \rightarrow P_1
Rule 9: I- ~ (Introducing ~)
     I- \sim : If from P infer P<sub>1</sub> \Lambda \sim P_1 is proved then \sim P is proved
Rule 10: E-~ (Eliminating ~)
     E- ~ : If from ~ P infer P_1 \Lambda ~ P_1 is proved then P is proved
```

Cont...

- If a formula β is derived / proved from a set of premises / hypotheses $\{\alpha_1, ..., \alpha_n\}$,
 - then one can write it as **from** α_1 , ..., α_n **infer** β .
- In natural deductive system,
 - a theorem to be proved should have a form from $\alpha 1, ..., \alpha n$ infer β .
- Theorem infer β means that
 - there are no premises and β is true under all interpretations i.e., β is a tautology or valid.
- If we assume that $\alpha \to \beta$ is a premise, then we conclude that β is proved if α is given i.e.,
 - if 'from α infer β ' is a theorem then $\alpha \to \beta$ is concluded.
 - The converse of this is also true.

Deduction Theorem: To prove a formula $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n \rightarrow \beta$, it is sufficient to prove a theorem from $\alpha_1, \alpha_2, \ldots, \alpha_n$ infer β .

Examples

Example1: Prove that $P\Lambda(QVR)$ follows from $P\Lambda Q$

Solution: This problem is restated in natural deductive system as "from $P \Lambda Q$ infer $P \Lambda (Q V R)$ ". The formal proof is given as follows:

{Theorem}	from P Λ Q infer P Λ (Q V R)	
{ premise}	PΛQ	(1)
$\{ E-\Lambda, (1) \}$	Р	(2)
$\{ E-\Lambda, (1) \}$	Q	(3)
{ I-V , (3) }	QVR	(4)
$\{ 1-\Lambda, (2, 4) \}$	P Λ (Q V R)	Conclusion

Cont..

Example2: Prove the following theorem:

infer
$$((Q \rightarrow P) \land (Q \rightarrow R)) \rightarrow (Q \rightarrow (P \land R))$$

Solution:

- In order to prove infer $((Q \rightarrow P) \land (Q \rightarrow R)) \rightarrow (Q \rightarrow (P \land R))$, prove a theorem from $\{Q \rightarrow P, Q \rightarrow R\}$ infer $Q \rightarrow (P \land R)$.
- Further, to prove $\mathbf{Q} \rightarrow (\mathbf{P} \wedge \mathbf{R})$, prove a sub theorem from Q infer $\mathbf{P} \wedge \mathbf{R}$

```
{Theorem} from Q \rightarrow P, Q \rightarrow R infer Q \rightarrow (P \land R)
{ premise 1}
                                 Q \rightarrow P
                                                                   (1)
                Q \rightarrow R
{ premise 2}
                                                                   (2)
{ sub theorem} from Q infer P \land R
                                                                   (3)
                                                                   (3.1)
           { premise }
           \{ E- \rightarrow , (1, 3.1) \}
                                                                   (3.2)
           \{E-\to, (2, 3.1)\}
                                                                   (3.3)
                                            P \wedge R
          \{ I-\Lambda, (3.2,3.3) \}
                                                                   (3.4)
           \{ I \rightarrow , (3) \}
                                            Q \rightarrow (P \land R) Conclusion
```

Axiomatic System for PL

- It is based on the set of only three axioms and one rule of deduction.
 - It is minimal in structure but as powerful as the truth table and natural deduction approaches.
 - The proofs of the theorems are often difficult and require a guess in selection of appropriate axiom(s) and rules.
 - These methods basically require forward chaining strategy where we start with the given hypotheses and prove the goal.

```
Axiom1 (A1): \alpha \rightarrow (\beta \rightarrow \alpha)
```

Axiom2 (A2):
$$(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$$

Axiom3 (A3):
$$(\sim \alpha \rightarrow \sim \beta) \rightarrow (\beta \rightarrow \alpha)$$

Modus Ponen (MP) defined as follows:

Hypotheses: $\alpha \rightarrow \beta$ and α **Consequent:** β

Examples

Examples: Establish the following:

1. $\{Q\} \mid -(P \rightarrow Q)$ i.e., $P \rightarrow Q$ is a deductive consequence of $\{Q\}$.

$$\begin{array}{lll} \mbox{ \{Hypothesis\} } & \mbox{ Q} & \mbox{ (1)} \\ \mbox{ \{Axiom A1\} } & \mbox{ Q} \rightarrow \mbox{ (P} \rightarrow \mbox{ Q}) & \mbox{ (2)} \\ \mbox{ \{MP, (1,2)\} } & \mbox{ P} \rightarrow \mbox{ Q} & \mbox{ proved} \\ \end{array}$$

2. $\{P \rightarrow Q, Q \rightarrow R\}$ |- $(P \rightarrow R)$ i.e., $P \rightarrow R$ is a deductive consequence of $\{P \rightarrow Q, Q \rightarrow R\}$.

proved

Deduction Theorems in AS

Deduction Theorem:

If Σ is a set of hypotheses and α and β are well-formed formulae , then $\{\Sigma \cup \alpha \} \mid -\beta \text{ implies } \Sigma \mid -(\alpha \to \beta).$

Converse of deduction theorem:

Given Σ |- $(\alpha \to \beta)$, we can prove $\{\Sigma \cup \alpha\}$ |- β .

Useful Tips

1. Given α , we can easily prove $\beta \to \alpha$ for any well-formed formulae α and β .

2. Useful tip

If $\alpha \to \beta$ is to be proved, then include α in the set of hypotheses Σ and derive β from the set $\{\Sigma \cup \alpha\}$. Then using deduction theorem, we conclude $\alpha \to \beta$.

Example: Prove $\sim P \rightarrow (P \rightarrow Q)$ using deduction theorem.

Proof: Prove $\{ \sim P \} \mid - (P \rightarrow Q) \text{ and } \mid - \sim P \rightarrow (P \rightarrow Q) \text{ follows from deduction theorem.}$

Semantic Tableaux System in PL

- Earlier approaches require
 - construction of proof of a formula from given set of formulae and are called direct methods.
- In semantic tableaux,
 - the set of rules are applied systematically on a formula or set of formulae to establish its consistency or inconsistency.
- Semantic tableau
 - binary tree constructed by using semantic rules with a formula as a root
- Assume α and β be any two formulae.

Semantic Tableaux Rules

Rule 1: A tableau for a formula $(\alpha \ \Lambda \ \beta)$ is constructed by adding both α and β to the same path (branch). This can be represented as follows: $(\alpha \ \Lambda \ \beta)$

οβ

Rule 2: A tableau for a formula $\sim (\alpha \ \Lambda \ \beta)$ is constructed by adding two alternative paths one containing $\sim \alpha$ and other containing $\sim \beta$.

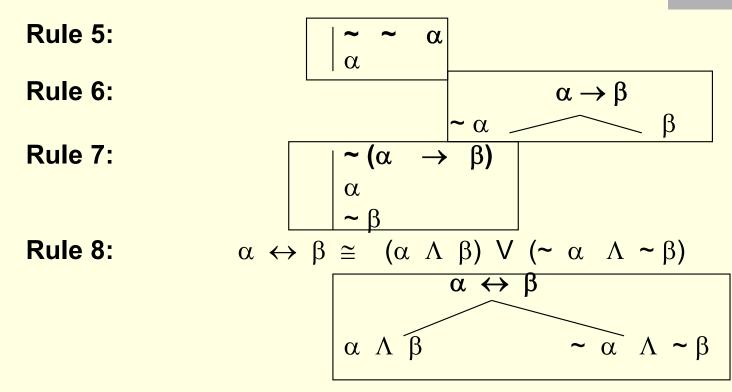
 $\sim \alpha \qquad \sim \beta$

Rule 3: A tableau for a formula $(\alpha \ V \ \beta)$ is constructed by adding two new paths one containing α and other containing β .

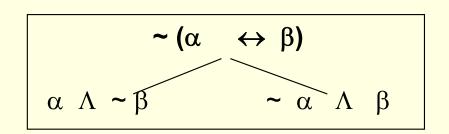
α V β

Rule 4: A tableau for a formula $\sim (\alpha \ V \ \beta)$ is constructed by adding both $\sim \alpha$ and $\sim \beta$ to the same path. This can be expressed as follows: $\qquad \qquad |\sim (\alpha \ V \ \beta) \qquad |$

Rules - Cont..



Rule 9:
$$\sim (\alpha \leftrightarrow \beta) \cong (\alpha \land \sim \beta) \lor (\sim \alpha \land \beta)$$

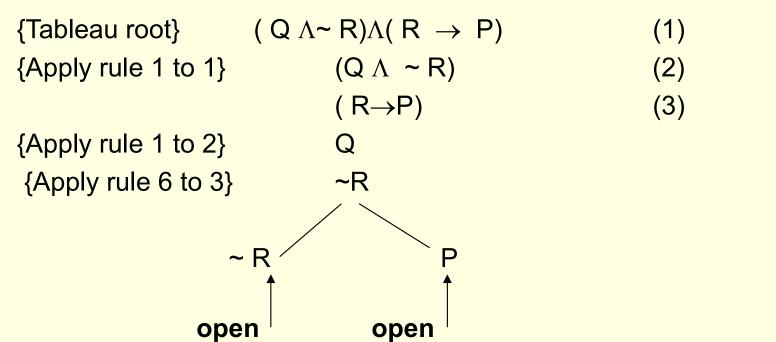


Consistency and Inconsistency

- If an atom P and ~ P appear on a same path of a semantic tableau,
 - then inconsistency is indicated and such path is said to be contradictory or closed (finished) path.
 - Even if one path remains **non contradictory** or **unclosed** (open), then the formula α at the root of a tableau is **consistent**.
- Contradictory tableau (or finished tableau):
 - It defined to be a tableau in which all the paths are contradictory or closed (finished).
- If a tableau for a formula α at the root is a contradictory tableau,
 - then a formula α is said to be inconsistent.

Examples

Show that α: (Q Λ ~ R) Λ (R → P) is consistent and find its model.



• {Q = T, R = F} and {P = T, Q = T, R = F} are models of α .

Cont...

• Show that $\alpha: (P \land Q \rightarrow R) \land (\neg P \rightarrow S) \land Q \land \neg R \land \neg S$ is inconsistent using tableaux method.

(Root)
$$(P \land Q \rightarrow R) \land (\sim P \rightarrow S) \land Q \land \sim R \land \sim S$$
 (1) {Apply rule 1 to 1} $P \land Q \rightarrow R$ (2) $\sim P \rightarrow S$ (3) Q $\sim R$ $\sim S$ (4) {Apply rule 6 to 3} $\sim \sim P = P$ $Closed: \{S, \sim S\} \text{ on the path}$ {Apply rule 6 to 2)} $\sim (P \land Q)$ $R \rightarrow Closed \{R, \sim R\}$ $\sim Q \rightarrow Q$ $\sim Q$ Closed $\{P, \sim P\}$ Closed $\{Q, \sim Q\}$

ullet α is inconsistent as we get contradictory tableau.

Resolution Refutation in PL

- Resolution refutation: Another simple method to prove a formula by contradiction.
- Here negation of goal is added to given set of clauses.
 - If there is a refutation in new set using resolution principle then goal is proved
- During resolution we need to identify two clauses,
 - one with positive atom (P) and other with negative atom (~ P) for the application of resolution rule.
- Resolution is based on modus ponen inference rule.

Disjunctive & Conjunctive Normal Forms

- Disjunctive Normal Form (DNF): A formula in the form $(L_{11} \ \Lambda \ \ \Lambda \ L_{1n} \) \ V \ \ V \ (L_{m1} \ \Lambda \ \ \Lambda \ L_{mk} \),$ where all L_{ii} are literals.
 - Disjunctive Normal Form is disjunction of conjunctions.
- Conjunctive Normal Form (CNF): A formula in the form (L_{11} V V L_{1n}) Λ Λ (L_{p1} V V L_{pm}), where all L_{ij} are literals.
 - CNF is conjunction of disjunctions or
 - CNF is conjunction of clauses
- Clause: It is a formula of the form (L₁V ... V L_m), where each L_k is a positive or negative atom.

Conversion of a Formula to its CNF

- Each PL formula can be converted into its equivalent CNF.
- Use following equivalence laws:

$$\begin{array}{lll} - & P \rightarrow Q \cong & \sim P \vee Q \\ - & P \leftrightarrow Q \cong & (P \rightarrow Q) \wedge (Q \rightarrow P) \end{array}$$

Double Negation

(De Morgan's law)

$$- \sim (P \land Q) \cong \sim P \lor \sim Q$$

- $\sim (P \lor Q) \cong \sim P \land \sim Q$

(Distributive law)

$$- P V (Q \Lambda R) \cong (P V Q) \Lambda (P V R)$$

Resolvent of Clauses

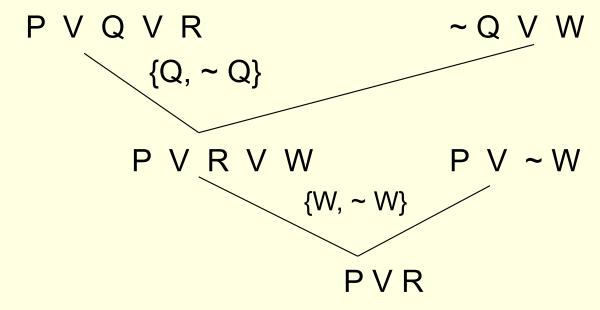
- If two clauses C₁ and C₂ contain a complementary pair of literals {L, ~L},
 - then these clauses may be resolved together by deleting L from C₁ and ~ L from C₂ and constructing a new clause by the disjunction of the remaining literals in C₁ and C₂.
- The new clause thus generated is called resolvent of C₁ and C₂.
 - Here C1 and C2 are called parents of resolved clause.
- Inverted binary tree is generated with the last node (root) of the binary tree to be a resolvent.
 - This is also called resolution tree.

Example

Find resolvent of the following clauses:

-
$$C_1 = PVQVR$$
; $C_2 = \sim QVW$; $C_3 = PV \sim W$

Inverted Resolution Tree



Resolvent(C1,C2, C3) = P V R

Logical Consequence

- **Theorem1**: If C is a resolvent of two clauses C₁ and C₂, then C is a *logical consequence* of {C₁, C₂}.
 - A deduction of an empty clause (or resolvent as contradiction) from a set S of clauses is called a resolution refutation of S.
- Theorem2: Let S be a set of clauses. A clause C is a logical consequence of S iff the set S'= S ∪ {~ C} is unsatisfiable.
 - In other words, C is a logical consequence of a given set S iff an empty clause is deduced from the set S'.

Example

- Show that C V D is a logical consequence of
 - S ={AVB, ~ AVD, C V~ B} using resolution refutation principle.
- First we will add negation of logical consequence
 - i.e., \sim (C V D) \cong \sim C \wedge \sim D to the set S.
 - Get S' = {A V B, ~ A V D, C V~ B, ~C, ~D}.
- Now show that S' is unsatisfiable by deriving contradiction using resolution principle.

