
INSTANCE BASED LEARNING

[Read Ch. 8]

• k-Nearest Neighbor

• Locally weighted regression

• Radial basis functions

• Case-based reasoning

• Lazy and eager learning
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k-Nearest Neighbor Classifier

• Instances are assumed to be n-dimensional feature vec-

tors xp = (xp,1, . . . , xp,n)

Learning Phase

• Store all training examples 〈xi, f(xi)〉 in memory

Classification/Approximation Phase

• Nearest Neighbor:

Given query instance xq, first locate nearest train-

ing example xn, then estimate f̂(xq)← f(xn)

• k-Nearest Neighbor:

1. Given xq, take vote among its k nearest nbrs (if

discrete-valued target function — classification)

2. Take the mean of f values of k nearest nbrs (if

real-valued — approximation)

f̂(xq)←

∑k
i=1 f(xi)

k
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Nearest Neighbor Methods

• Conceptually simple

• Asymptotically have error rates that are no worse than twice
that of the optimum Bayes classifier

• Learn by simply memorizing training examples

• Construct a different approximation on the fly for each input
instance (query instance) unlike the other learning algorithms
we have considered so far which construct a single approxima-
tion to the target function during the learning phase and use it
thereafter for generating the output for each query instance

• The computational effort of learning is low

• The storage requirements of learning is high: need to memorize
the examples in the training set

• Cost of classifying new instances is high

• A distance measure needs to be defined over input space: e.g.
Euclidean distance, Hamming distance, etc as appropriate

• Performance degrades when there are many irrelevant attributes

Decision boundary induced by 1-NN
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When To Consider Nearest Neighbor

• Instances map to points in ℜn

• Less than 20 attributes per instance

• Lots of training data

• Advantages:

1. Training is very fast

2. Learn complex target functions

3. Don’t lose information

• Disadvantages:

1. Slow at query time

2. Easily fooled by irrelevant attributes
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Behavior in the Limit

• Consider p(x) defines probability that instance x will

be labeled 1 (positive) versus 0 (negative).

• Nearest neighbor:

As number of training examples → ∞, approaches

Gibbs Algorithm

Gibbs: with probability p(x) predict 1, else 0

• k-Nearest neighbor:

As number of training examples → ∞ and k gets

large, approaches Bayes optimal

Bayes optimal: if p(x) > .5 then predict 1, else 0

• Note: Gibbs has at most twice the expected error of

Bayes optimal
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Distance-Weighted k-Nearest Neighbor Classifier

• Might want to weight nearer neighbors more heavily . . .

Learning Phase

• Store each training example 〈xi, f(xi)〉 in memory

Classification/Approximation Phase

• For discrete-valued target functions f : ℜn → V

Given query instance xq to be classified

1. Let x1, . . . , xk denote the k nearest neighbors of xq

2. Return

f̂(xq)← argmax
v∈V

k∑

i=1

wiδ(v, f(xi))

where δ(a, b) = 1 if a = b otherwise 0, and wi = 1
d(xq,xi)2

• For real-valued target functions f : ℜn → ℜ

Given query instance xq to be approximated

2. Replace above by

f̂(xq)←

∑k
i=1 wif(xi)∑k

i=1 wi

and d(xq, xi) is distance between xq and xi

Note: now it makes sense to use all training examples instead of
just k

→ Shepard’s method
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Curse of Dimensionality

• Imagine instances described by 20 attributes, but

only 2 are relevant to target function

• Curse of dimensionality: nearest nbr is easily mislead

when high-dimensional X

• One approach:

1. Stretch jth axis by weight zj, where z1, . . . , zn cho-

sen to minimize prediction error

2. Use cross-validation to automatically choose weights

z1, . . . , zn

3. Note: setting zj to zero eliminates this dimension

altogether

See [Moore and Lee, 1994]
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Locally Weighted Regression

• Note: k-NN forms local approximation to f for each

query point xq

• Why not form an explicit approximation f̂(x) for re-
gion surrounding xq

1. Fit linear function to k nearest neighbors

2. Fit quadratic, . . .

3. Produces “piecewise approximation” to f

• Locally weighted regression involves calculating an

approximation of the function value for a given input

based on its nearest neighbors when needed during

the approximation phase as opposed to during the

learning phase.

• Example of linear approximation

f̂(x) = w0+w1a1(x)+· · ·+wnan(x) = w0+
n∑

i=1

wiai(x)

where ai(x) = i-th attribute of x.
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Locally Weighted Regression Error Functions

1. Squared error over k-NN of xq

E1(xq) ≡
1

2

∑

x∈ kNN(xq)

(f(x)− f̂(x))2

wi ← wi − η
∂E1(xq)

∂wi

wi ← wi + η
∑

x∈ kNN(xq)

(f(x)− f̂(x))ai(x)

2. Distance-weighted squared error over all samples

E2(xq) ≡
1

2

∑

x∈D

(f(x)− f̂(x))2K(d(xq, x))

wi ← wi − η
∂E2(xq)

∂wi

wi ← wi + η
∑

x∈D

K(d(xq, x))(f(x)− f̂(x))ai(x)

3. Distance-weighted squared error over k-NN of xq

E3(xq) ≡
1

2

∑

x∈ kNN(xq)

(f(x)− f̂(x))2K(d(xq, x))

wi ← wi − η
∂E3(xq)

∂wi

wi ← wi + η
∑

x∈ kNN(xq)

K(d(xq, x))(f(x)− f̂(x))ai(x)
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Radial Basis Function Networks

• Global approximation to target function, in terms of

linear combination of local approximations

A function is approximated as a linear combination

of radial basis functions (RBF). RBFs capture lo-

cal behaviors of functions

• A different kind of neural network where ai(x) are

the attributes describing instance x, and

f(x) = w0 +
k∑

u=1

wuKu(d(xu, x))

One common choice for Ku(d(xu, x)) is

Ku(d(xu, x)) = e
− 1

2σ2
u
d2(xu,x)

...

...

f(x)

w1w0 wk

1

1a  (x)
2

a  (x)
n

a  (x)
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Radial Basis Function Networks
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• Hidden layer representation

1. Hidden layer applies a non-linear transformation from the input space
to the hidden space

2. Output layer applies a linear transformation from the hidden space to
the output space

ϕ(x) = 〈ϕ1(x), . . . , ϕH(x)〉 = {ϕi(x)}
H
i=1

• ϕ-Separability of patterns: A (binary) partition,

also called dichotomy, (C1, C2) of the training set C

is ϕ-separable if there is a vector w = (w1, . . . , wH)

such that

w · ϕ(x) > 0 iff x ∈ C1

w · ϕ(x) < 0 iff x ∈ C2

For all x = (x1, . . . , xm)
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Examples of ϕ-Separability and RBF Functions

• Separating surface: w · ϕ(x) = 0

Linearly separable:

Spherically separable:

Quadratically separable:

• Radial Basis Functions

Hidden units use a radial basis function

ϕσ(||x−w||) = e
−
||x−w||2

2σ2

The output depends on the distance of the input

x from the center t = w

x
2

x
1

x
N

( || X- W||2)

W is called center

is called spread

center and spread are parameters
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Radial Basis Functions

• A hidden neuron is more sensitive to data points near

its center. This sensitivity may be tuned by adjusting

the spread. Larger spread → less sensitivity

• Gaussian radial basis function: ϕσ(r) = e
− r2

2σ2 , σ > 0

center

:

is a measure of how spread the curve is:

Large Small 

• Other radial basis functions

Multiquadrics: ϕ = (r2 + c2)
1
2, c > 0, r = ||x−w||

Inverse multiquadrics: ϕ = 1

(r2+c2)
1
2
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Implementing Exclusive-OR by RBF Network

• Construct an RBF pattern classifier such that

1. (0,0) and (1,1) are mapped to 0, class C1

2. (0,1) and (1,0) are mapped to 1, class C2

• In the feature (hidden) space:

1. ϕ1(x1, x2) = e−||x−w1||
2
= z1 where w2 = [1,1]t

2. ϕ2(x1, x2) = e−||x−w2||
2
= z2 where w2 = [0,0]t

z1

z2

1.0

1.0

(0,0)

0.5

0.5 (1,1)

Decision boundary

(0,1) and (1,0)

• When mapped into the feature space 〈z1, z2〉, C1 and C2 become

linearly separable. So a linear classifier with ϕ1(x) and ϕ2(x) as

inputs can be used to solve the XOR problem
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Training Radial Basis Function Networks

• Q1: What xu to use for each kernel function Ku(d(xu, x))?

1. Scatter uniformly throughout instance space

2. Or use training instances (reflects instance distri-

bution)

• Q2: How to train weights (assume here Gaussian

Ku)?

1. First choose variance (and perhaps mean) for each

Ku

e.g., use EM

2. Then hold Ku fixed, and train linear output layer

Efficient method to fit linear function

• Closely related to distance-weighted regression, but

“eager” instead of “lazy”
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RBF Learning Algorithms
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RBF Learning Algorithms
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RBF Learning Algorithms

Initialize the parameters -- centers of the hidden 
neurons are typically initialized to coincide with a 
subset of the training set 

Use gradient descent to adjust the parameters using 
the training data until the desired performance 
criterion is satisfied

Some Useful Facts
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Case-Based Reasoning

• Can apply instance-based learning even when X 6= ℜn

→ Need different “distance” metric

• Case-Based Reasoning is instance-based learning ap-

plied to instances with symbolic logic descriptions

((user-complaint error53-on-shutdown)

(cpu-model PowerPC)

(operating-system Windows)

(network-connection PCIA)

(memory 48meg)

(installed-applications Excel Netscape VirusScan)

(disk 1gig)

(likely-cause ???))

• Three properties of CBR

1. Lazy learning methods

2. Classification of intances by similarity

3. Symbolic representation of instance
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Case-Based Reasoning in CADET

• CADET: 75 stored examples of mechanical devices

1. each training example: 〈qualitative function, mechanical
structure〉

2. new query: desired function,

3. target value: mechanical structure for this function

• Distance metric: match qualitative function descriptions

• Instances represented by rich structural descriptions

• Multiple cases retrieved (and combined) to form solution to
new problem

• Tight coupling between case retrieval and problem solving

• Bottom line:

1. Simple matching of cases useful for tasks such as answering
help-desk queries

2. Area of ongoing research
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Case-Based Reasoning in CADET

A stored case: 
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T−junction pipe

T
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Structure:
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A problem specification: Water faucet
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Lazy versus Eager Learning

1. Lazy learner

• Can produce many good local approximations based on the

training data and the query input

• Waits for query before generalizing

• Requires a predefined distance measure over the input space,
low computation effort but large memory for storing exam-
ples

• Has to work hard during classification or approximation

e.g. k-NN, LWR, CBR

2. Eager learner

• Construct a global approximation based only on the training
data without regard to the query input

• Generalizes before seeing query

e.g. CL, DT, ANN, BNN, RBF, . . .

• If they use the same H, lazy can represent more com-

plex functions
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