INSTANCE BASED LEARNING

[Read Ch. 8]

- k-Nearest Neighbor
- Locally weighted regression
- Radial basis functions
- Case-based reasoning
- Lazy and eager learning

k-Nearest Neighbor Classifier

• Instances are assumed to be n-dimensional feature vectors $x_p = (x_{p,1}, \dots, x_{p,n})$

Learning Phase

• Store all training examples $\langle x_i, f(x_i) \rangle$ in memory

Classification/Approximation Phase

• Nearest Neighbor:

Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

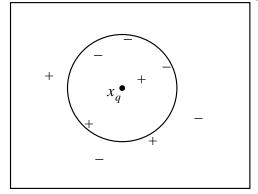
- k-Nearest Neighbor:
 - 1. Given x_q , take vote among its k nearest nbrs (if discrete-valued target function classification)
 - 2. Take the mean of f values of k nearest nbrs (if real-valued approximation)

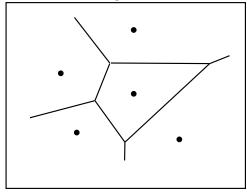
$$\widehat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k f(x_i)}{k}$$

Nearest Neighbor Methods

- Conceptually simple
- Asymptotically have error rates that are no worse than twice that of the optimum Bayes classifier
- Learn by simply memorizing training examples
- Construct a <u>different approximation on the fly</u> for each input instance (query instance) unlike the other learning algorithms we have considered so far which construct a single approximation to the target function during the learning phase and use it thereafter for generating the output for each query instance
- The computational effort of learning is low
- The storage requirements of learning is high: need to memorize the examples in the training set
- Cost of classifying new instances is high
- A distance measure needs to be defined over input space: e.g. Euclidean distance, Hamming distance, etc as appropriate
- Performance degrades when there are many irrelevant attributes

Decision boundary induced by 1-NN





Voronoi Diagram

When To Consider Nearest Neighbor

- ullet Instances map to points in \Re^n
- Less than 20 attributes per instance
- Lots of training data
- Advantages:
 - 1. Training is very fast
 - 2. Learn complex target functions
 - 3. Don't lose information
- Disadvantages:
 - 1. Slow at query time
 - 2. Easily fooled by irrelevant attributes

Behavior in the Limit

- Consider p(x) defines probability that instance x will be labeled 1 (positive) versus 0 (negative).
- Nearest neighbor:

As number of training examples $\to \infty$, approaches Gibbs Algorithm

Gibbs: with probability p(x) predict 1, else 0

• *k*-Nearest neighbor:

As number of training examples $\to \infty$ and k gets large, approaches Bayes optimal

Bayes optimal: if p(x) > .5 then predict 1, else 0

 Note: Gibbs has at most twice the expected error of Bayes optimal

Distance-Weighted k-Nearest Neighbor Classifier

Might want to weight nearer neighbors more heavily . . .

Learning Phase

• Store each training example $\langle x_i, f(x_i) \rangle$ in memory

Classification/Approximation Phase

- For discrete-valued target functions $f: \Re^n \to V$ Given query instance x_q to be classified
 - 1. Let x_1, \ldots, x_k denote the k nearest neighbors of x_q
 - 2. Return

$$\widehat{f}(x_q) \leftarrow \arg\max_{v \in V} \sum_{i=1}^k w_i \delta(v, f(x_i))$$

where $\delta(a,b)=1$ if a=b otherwise 0, and $w_i=\frac{1}{d(x_q,x_i)^2}$

- ullet For real-valued target functions $f:\ \Re^n o \Re$ Given query instance x_q to be approximated
 - 2. Replace above by

$$\widehat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

and $d(x_q,x_i)$ is distance between x_q and x_i

Note: now it makes sense to use \emph{all} training examples instead of just \emph{k}

→ Shepard's method

Curse of Dimensionality

- Imagine instances described by 20 attributes, but only 2 are relevant to target function
- ullet Curse of dimensionality: nearest nbr is easily mislead when high-dimensional X
- One approach:
 - 1. Stretch jth axis by weight z_j , where z_1, \ldots, z_n chosen to minimize prediction error
 - 2. Use cross-validation to automatically choose weights z_1,\ldots,z_n
 - 3. Note: setting z_j to zero eliminates this dimension altogether

See [Moore and Lee, 1994]

Locally Weighted Regression

- ullet Note: k-NN forms local approximation to f for each query point x_q
- Why not form an explicit approximation $\widehat{f}(x)$ for region surrounding x_q
 - 1. Fit linear function to k nearest neighbors
 - 2. Fit quadratic, ...
 - 3. Produces "piecewise approximation" to f
- Locally weighted regression involves calculating an approximation of the function value for a given input based on its nearest neighbors when needed during the approximation phase as opposed to during the learning phase.
- Example of linear approximation

$$\widehat{f}(x) = w_0 + w_1 a_1(x) + \dots + w_n a_n(x) = w_0 + \sum_{i=1}^n w_i a_i(x)$$
 where $a_i(x) = i$ -th attribute of x .

Locally Weighted Regression Error Functions

1. Squared error over k-NN of x_q

$$E_1(x_q) \equiv rac{1}{2} \sum_{x \in k \mathsf{NN}(x_q)} (f(x) - \widehat{f}(x))^2$$
 $w_i \leftarrow w_i - \eta rac{\partial E_1(x_q)}{\partial w_i}$
 $w_i \leftarrow w_i + \eta \sum_{x \in k \mathsf{NN}(x_q)} (f(x) - \widehat{f}(x)) a_i(x)$

2. Distance-weighted squared error over all samples

$$E_{2}(x_{q}) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^{2} K(d(x_{q}, x))$$

$$w_{i} \leftarrow w_{i} - \eta \frac{\partial E_{2}(x_{q})}{\partial w_{i}}$$

$$w_{i} \leftarrow w_{i} + \eta \sum_{x \in D} K(d(x_{q}, x))(f(x) - \hat{f}(x))a_{i}(x)$$

3. Distance-weighted squared error over $k ext{-}\mathsf{NN}$ of x_q

$$E_{3}(x_{q}) \equiv \frac{1}{2} \sum_{x \in k \mathsf{NN}(x_{q})} (f(x) - \widehat{f}(x))^{2} K(d(x_{q}, x))$$

$$w_{i} \leftarrow w_{i} - \eta \frac{\partial E_{3}(x_{q})}{\partial w_{i}}$$

$$w_{i} \leftarrow w_{i} + \eta \sum_{x \in k \mathsf{NN}(x_{q})} K(d(x_{q}, x))(f(x) - \widehat{f}(x))a_{i}(x)$$

Radial Basis Function Networks

 Global approximation to target function, in terms of linear combination of local approximations

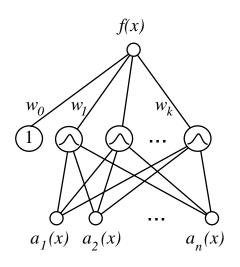
A function is approximated as a linear combination of radial basis functions (RBF). RBFs capture local behaviors of functions

• A different kind of neural network where $a_i(x)$ are the attributes describing instance x, and

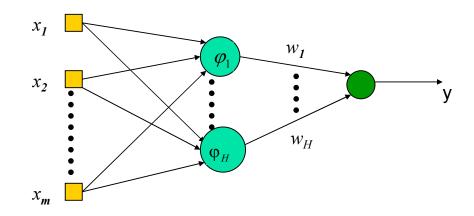
$$f(x) = w_0 + \sum_{u=1}^{k} w_u K_u(d(x_u, x))$$

One common choice for $K_u(d(x_u, x))$ is

$$K_u(d(x_u, x)) = e^{-\frac{1}{2\sigma_u^2}d^2(x_u, x)}$$



Radial Basis Function Networks



- Hidden layer representation
 - 1. Hidden layer applies a non-linear transformation from the input space to the hidden space
 - 2. Output layer applies a linear transformation from the hidden space to the output space

$$\varphi(\mathbf{x}) = \langle \varphi_1(\mathbf{x}), \dots, \varphi_H(\mathbf{x}) \rangle = \{ \varphi_i(\mathbf{x}) \}_{i=1}^H$$

• φ -Separability of patterns: A (binary) partition, also called dichotomy, (C_1,C_2) of the training set C is φ -separable if there is a vector $\mathbf{w}=(w_1,\ldots,w_H)$ such that

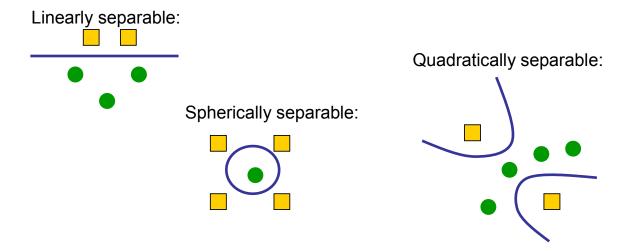
$$\mathbf{w} \cdot \varphi(\mathbf{x}) > 0$$
 iff $\mathbf{x} \in C_1$

$$\mathbf{w} \cdot \varphi(\mathbf{x}) < 0 \text{ iff } \mathbf{x} \in C_2$$

For all
$$\mathbf{x} = (x_1, \dots, x_m)$$

Examples of φ -Separability and RBF Functions

• Separating surface: $\mathbf{w} \cdot \varphi(\mathbf{x}) = 0$

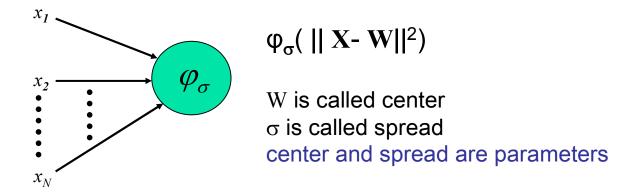


Radial Basis Functions

Hidden units use a radial basis function

$$\varphi_{\sigma}(||\mathbf{x} - \mathbf{w}||) = e^{-\frac{||\mathbf{X} - \mathbf{w}||^2}{2\sigma^2}}$$

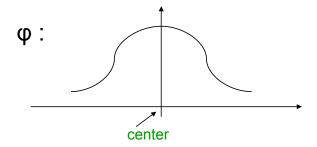
The output depends on the distance of the input \mathbf{x} from the center $t = \mathbf{w}$



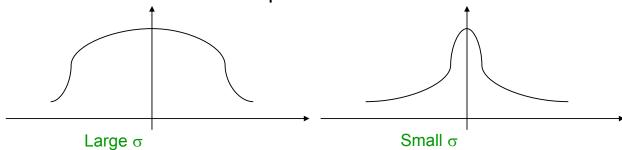
Radial Basis Functions

 A hidden neuron is more sensitive to data points near its center. This sensitivity may be tuned by adjusting the spread. Larger spread → less sensitivity

• Gaussian radial basis function: $\varphi_{\sigma}(r) = e^{-\frac{r^2}{2\sigma^2}}$, $\sigma > 0$



 σ is a measure of how spread the curve is:



Other radial basis functions

Multiquadrics: $\varphi = (r^2 + c^2)^{\frac{1}{2}}$, c > 0, $r = ||\mathbf{x} - \mathbf{w}||$

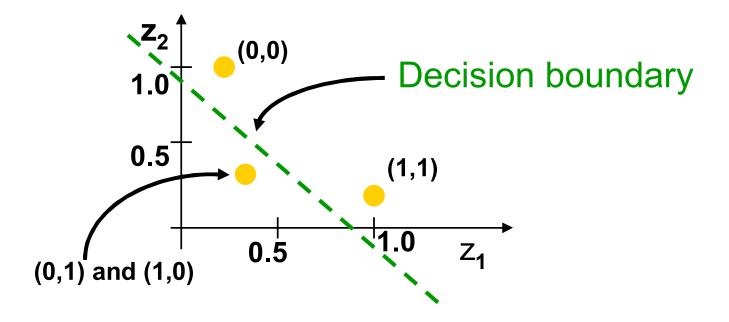
Inverse multiquadrics: $\varphi = \frac{1}{(r^2+c^2)^{\frac{1}{2}}}$

Implementing Exclusive-OR by RBF Network

- Construct an RBF pattern classifier such that
 - 1. (0,0) and (1,1) are mapped to 0, class C_1
 - 2. (0,1) and (1,0) are mapped to 1, class C_2
- In the feature (hidden) space:

1.
$$\varphi_1(x_1, x_2) = e^{-||\mathbf{X} - \mathbf{W}_1||^2} = z_1$$
 where $\mathbf{W}_2 = [1, 1]^t$

2.
$$\varphi_2(x_1, x_2) = e^{-||\mathbf{X} - \mathbf{W}_2||^2} = z_2$$
 where $\mathbf{W}_2 = [0, 0]^t$



• When mapped into the feature space $\langle z_1, z_2 \rangle$, C_1 and C_2 become linearly separable. So a linear classifier with $\varphi_1(\mathbf{x})$ and $\varphi_2(\mathbf{x})$ as inputs can be used to solve the XOR problem

Training Radial Basis Function Networks

- Q1: What x_u to use for each kernel function $K_u(d(x_u,x))$?
 - 1. Scatter uniformly throughout instance space
 - 2. Or use training instances (reflects instance distribution)
- Q2: How to train weights (assume here Gaussian K_u)?
 - 1. First choose variance (and perhaps mean) for each ${\it Ku}$

e.g., use EM

- 2. Then hold K_u fixed, and train linear output layer Efficient method to fit linear function
- Closely related to distance-weighted regression, but "eager" instead of "lazy"

RBF Learning Algorithms

$$\Delta \sigma_{j} = -\eta_{\sigma_{j}} \, \frac{\partial E_{S}}{\partial \sigma_{j}}$$

$$\Delta \alpha_{j} = -\eta_{j} \frac{\partial E_{S}}{\partial \alpha_{j}}$$

$$\Delta w_{ji} = -\eta_{ji} \frac{\partial E_S}{\partial w_{ji}}$$

Depending on the specific function can be computed using the chain rule of calculus

$$z_{jp} = e^{-\frac{\|\mathbf{x}_p - \mathbf{w}_j\|^2}{2\sigma_j^2}}$$

$$y_p = \sum_{j=0}^{L} \alpha_j z_{jp}$$

$$E_p = \frac{1}{2} (t_p - y_p)^2$$

$$\mathbf{X}_p = [x_{1p}, \dots, x_{Np}]^T$$

$$\mathbf{W}_j = [w_{j1}, \dots, w_{jN}]^T$$

RBF Learning Algorithms

$$\Delta \alpha_{j} = -\eta_{j} \frac{\partial E_{p}}{\partial \alpha_{j}} = \eta_{j} (t_{p} - y_{p}) z_{jp}$$

$$\alpha_{j} \leftarrow \alpha_{j} + \eta_{j} (t_{p} - y_{p}) z_{jp}$$

$$\frac{\partial E_{p}}{\partial w_{ji}} = \frac{\partial E_{p}}{\partial y_{p}} \frac{\partial y_{p}}{\partial z_{jp}} \frac{\partial z_{jp}}{\partial w_{ji}}$$

$$= -(t_{p} - y_{p}) \alpha_{j} \left(\frac{z_{jp}}{\sigma_{j}^{2}}\right) (x_{ip} - w_{ji})$$

$$w_{ji} = w_{ji} + \eta_{ji} (t_{p} - y_{p}) \alpha_{j} \left(\frac{z_{jp}}{\sigma_{j}^{2}}\right) (x_{ip} - w_{ji})$$

$$\frac{\partial E_{p}}{\partial \sigma_{j}} = \frac{\partial E_{p}}{\partial y_{p}} \frac{\partial y_{p}}{\partial z_{jp}} \frac{\partial z_{jp}}{\partial \sigma_{j}}$$

$$= -(t_{p} - y_{p})\alpha_{j}(-z_{jp})\left(\frac{2}{\sigma_{j}})(\ln z_{jp})\right)$$

$$\sigma_{j} \leftarrow \sigma_{j} - \eta_{j}(t_{p} - y_{p})\alpha_{j}(z_{jp})\left(\frac{2}{\sigma_{j}})(\ln z_{jp})\right)$$

RBF Learning Algorithms

Initialize the parameters -- centers of the hidden neurons are typically initialized to coincide with a subset of the training set

Use gradient descent to adjust the parameters using the training data until the desired performance criterion is satisfied

Some Useful Facts

$$\begin{aligned} & \|V\|^2 = V^T V \text{ (norm)} \\ & \|V\|_C^2 = (CV)^T (CV) = V^T C^T CV \text{ (weighted norm)} \\ & \|V\|_C^2 = \|V\|^2 \text{ if } C^T C = \text{identity matrix} \\ & \frac{d}{d\mathbf{X}} (A\mathbf{X}) = A \\ & \frac{d}{d\mathbf{X}} (\mathbf{X}^T A\mathbf{X}) = 2A\mathbf{X} \text{ (when A is a symmetric matrix)} \\ & \frac{d}{dA} (\mathbf{X}^T A\mathbf{X}) = \mathbf{X}^T \mathbf{X} \end{aligned}$$

Case-Based Reasoning

- Can apply instance-based learning even when $X \neq \Re^n$
 - → Need different "distance" metric
- Case-Based Reasoning is instance-based learning applied to instances with symbolic logic descriptions

```
((user-complaint error53-on-shutdown)
  (cpu-model PowerPC)
  (operating-system Windows)
  (network-connection PCIA)
  (memory 48meg)
  (installed-applications Excel Netscape VirusScan)
  (disk 1gig)
  (likely-cause ???))
```

- Three properties of CBR
 - 1. Lazy learning methods
 - 2. Classification of intances by similarity
 - 3. Symbolic representation of instance

Case-Based Reasoning in CADET

- CADET: 75 stored examples of mechanical devices
 - each training example: \(\)qualitative function, mechanical structure \(\)
 - 2. new query: desired function,
 - 3. target value: mechanical structure for this function
- Distance metric: match qualitative function descriptions
- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving
- Bottom line:
 - 1. Simple matching of cases useful for tasks such as answering help-desk queries
 - 2. Area of ongoing research

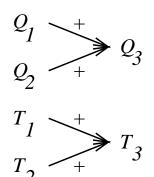
Case-Based Reasoning in CADET

A stored case: T-junction pipe

Structure:

T = temperature Q = waterflow $Q = V_3, T_3$

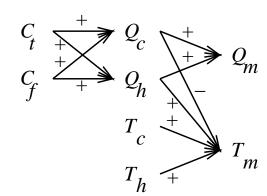
Function:



A problem specification: Water faucet

Structure:

Function:



Lazy versus Eager Learning

1. Lazy learner

- Can produce many good local approximations based on the training data and the query input
- Waits for query before generalizing
- Requires a predefined distance measure over the input space, low computation effort but large memory for storing examples
- Has to work hard during classification or approximation

e.g. k-NN, LWR, CBR

2. Eager learner

- Construct a global approximation based only on the training data without regard to the query input
- Generalizes before seeing query

e.g. CL, DT, ANN, BNN, RBF, ...

• If they use the same H, lazy can represent more complex functions