IV-B.Tech I-Semester I-Mid Term Examinations, August 2025 Key / Scheme of Evaluation

Max. Marks: 30

Subject: Machine Learning Subject Code: 127CX

Q.No.	Question & Answer					
a.	Define a well-posed problem with one example. A problem is well-posed if: its performance at tasks <i>T</i> , as measured by <i>P</i> , improves with experience <i>E</i> . A Handwriting Recognition Learning Problem: Task <i>T</i> : recognizing and classifying handwritten words within images Performance measure <i>P</i> : percent of words correctly classified Training experience <i>E</i> : a database of handwritten words with given classifications					
b.	List types of learning in ML. Supervised, Unsupervised, Semi-supervised, Reinforcement learning.	1				
c.	State one design issue in ML. Overfitting or underfitting while training a model.					
d.	What is a maximally specific hypothesis? A hypothesis that is consistent with training data and cannot be made more specific without contradicting the data.					
e.	What is a version space in concept learning? The set of all hypotheses that are consistent with the training examples.	1				
f.	What are different impurity measures used in decision trees? Gain, Gain Ratio, Gini Gain					
g.	What is a perceptron? A simple linear binary classifier that maps input features to an output using weights, bias, and activation function.	1				
h.	What is an activation function? A function applied to the weighted sum of inputs in a neural network neuron to introduce non-linearity. Examples: Sigmoid, ReLU, Tanh.	1				
i.	Give definition of Support Vector Machine (SVM). A supervised ML algorithm that finds the optimal hyperplane separating data points of different classes with maximum margin.	1				
j.	What is a linear classifier? A classifier that separates classes using a linear decision boundary of the form: $w^Tx + b = 0$.	1				
Q.2(a)	Explain the steps involved in designing a learning system. 1. Problem Description 2. Choosing the Training Experience 3. Choosing the Target Function 4. Choosing a Representation for the Target Function 5. Choosing a Function Approximation Algorithm 6. Final Design Brief explanation of each step.	3				
(b)	Differentiate between supervised, unsupervised learning with example. Supervised: Learns mapping from input to output using labeled data. Example: spam detection. Unsupervised: Finds patterns in unlabeled data. Example: customer segmentation	2				
Q.3(a)	Discuss concept learning task along with general to specific ordering of hypothesis. Concept learning task: Inferring a Boolean-valued function from training examples. General-to-specific ordering: Hypotheses ordered such that general hypotheses cover more examples, while specific hypotheses cover fewer.	2				

Maintains S (specific boundary) and G (general boundary).

- Positive example: Generalize S minimally, restrict G.
- **Negative example:** Specialize G minimally, restrict S.

Considering EnjoySport dataset:

Example	Sky	AirTemp	Humidity	Wind	EnjoySport	
1	Sunny	Warm	Normal	Strong	Yes	
2	Sunny	Warm	High	Strong	Yes	
3	Rainy	Cold	High	Strong	No	
4	Sunny	Warm	High	Strong	Yes	

Start: $S = \langle \emptyset, \emptyset, \emptyset \rangle, G = \langle ?, ?, ?, ? \rangle$

After 1st positive: S = <Sunny, Warm, Normal, Strong> **After 2nd positive:** S = <Sunny, Warm, ?, Strong>

After negative: G specialized to exclude negative instances

Final: S = <Sunny, Warm, ?, Strong>

Q.5(a) Draw and explain the architecture of a single-layer feed-forward neural network.

- A single-layer feed-forward neural network connects input features directly to output neurons through weighted connections, where each weight indicates the importance of an input.
- Each neuron computes a weighted sum of inputs plus bias, which is then passed through an activation function (step, sigmoid, ReLU, tanh) to generate its output.
- The output layer consists of one or more neurons that provide the network's final predictions (class labels or continuous values).
- Data flows strictly forward from inputs to outputs with no feedback loops, hence the name *feed-forward*.

(b) Show how a perceptron can implement logic gates (AND / OR / XOR) with neat diagrams.

AND

2

3

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

AND				OR			XOR		
x1	x2	у	x1	x2	у	x1	x2	у	
0	0	0	0	0	0	0	0	0	
0	1	0	0	1	1	0	1	1	
1	0	0	1	0	1	1	0	1	
1	1	1	1	1	1	1	1	0	
								1	

Weekend	Weather	Parents	Money	Decision
W1.	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Stay-in
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

- i. What is the best attribute for the root node child?
- ii. Using ID3 algorithm construct decision tree.

i. Target classes and counts:

Cinema = 6, Tennis = 2, Stay-in = 1, Shopping = 1.

 $H(S) = -\sum p_c \log_2 p_c \approx 1.57095$ bits

1) Weather (values: Sunny, Windy, Rainy)

- Sunny (3) \rightarrow {Tennis 2, Cinema 1} H = 0.91830
- Windy $(4) \rightarrow \{\text{Cinema 3, Shopping 1}\}\ \text{H} = 0.81128$
- Rainy (3) \rightarrow {Cinema 2, Stay-in 1} H = 0.91830

H(S|Weather) = 0.87549

IG(Weather) = 1.57095 - 0.87549 = 0.69546

2) Parents (values: Yes, No)

- Yes (5) \rightarrow {Cinema 5} \rightarrow H = 0
- No (5) \rightarrow {Tennis 2, Stay-in 1, Cinema 1, Shopping 1} H = 1.92193

H(S|Parents) = 0.96096

IG(Parents) = 1.57095 - 0.96096 = 0.60999

3) Money (values: Rich, Poor)

- Rich (7) \rightarrow {Cinema 3, Tennis 2, Stay-in 1, Shopping 1} H = 1.84237
- **Poor (3)** \rightarrow {Cinema 3} \rightarrow H = 0

H(S|Money) = 1.28966

IG(Money) = 1.57095 - 1.28966 = 0.28129

Weather (IG =0.69546) is the best root.

ii. Grow the tree recursively

Split on Weather and compute the best attribute inside each branch using the remaining attributes {Parents, Money}.

Poor Rich
Cinema Shopping

